ISEE Upper Level Reading Comprehension › Analyzing the Text in Science Passages
Adapted from “The Influence of the Conception of Evolution on Modern Philosophy” by H. Höffding (1909) in Evolution in Modern Thought (1917 ed.)
When The Origin of Species appeared fifty years ago, Romantic speculation, Schelling's and Hegel's philosophy, still reigned on the continent, while in England, Positivism, the philosophy of Comte and Stuart Mill, represented the most important trend of thought. German speculation had much to say on evolution; it even pretended to be a philosophy of evolution. But then the word "evolution" was to be taken in an ideal, not in a real, sense. To speculative thought, the forms and types of nature formed a system of ideas, within which any form could lead us by continuous transitions to any other. It was a classificatory system which was regarded as a divine world of thought or images, within which metamorphoses could go on—a condition comparable with that in the mind of the poet when one image follows another with imperceptible changes.
Goethe's ideas of evolution, as expressed in his Metamorphosen der Pflanzen und der Thiere, belong to this category; it is, therefore, incorrect to call him a forerunner of Darwin. Schelling and Hegel held the same idea; Hegel expressly rejected the conception of a real evolution in time as coarse and materialistic. "Nature," he says, "is to be considered as a system of stages, the one necessarily arising from the other, and being the nearest truth of that from which it proceeds; but not in such a way that the one is naturally generated by the other; on the contrary \[their connection lies\] in the inner idea which is the ground of nature. The metamorphosis can be ascribed only to the notion as such, because it alone is evolution.... It has been a clumsy idea in the older as well as in the newer philosophy of nature, to regard the transformation and the transition from one natural form and sphere to a higher as an outward and actual production."
Which of the following best describes the author’s presentation of Hegel’s thought about evolution?
It is not comprised of progressive stages, each being the natural cause of the next.
It is purely a matter for our casual reflection.
It is a murky matter without much real reasoning at all.
It is a natural process, at least of sorts.
None of the other answers
Among philosophers, Hegel is perhaps one of the hardest to read. Stay very close to this text and use context clues from within the passage. Clearly, Hegel is not being presented as an exponent of scientific evolution in the fashion of Darwin. The key portion of the passage is, "A system of stages, the one necessarily arising from the other, and being the nearest truth of that from which it proceeds; but not in such a way that the one is naturally generated by the other." Each stage is the "nearest truth" for the one following it. However, it is not the natural cause of it. Yes, Hegel is strange—and far more cryptic than this small selection. However, we have enough details to get our answer!
Adapted from “Comets” by Camille Flammarion in Wonders of Earth, Sea, and Sky (1902, ed. Edward Singleton Holden)
The history of a comet would be an instructive episode of the great history of the heavens. In it could be brought together the description of the progressive movement of human thought, as well as the astronomical theory of these extraordinary bodies. Let us take, for example, one of the most memorable and best-known comets, and give an outline of its successive passages near the Earth. Like the planetary worlds, comets belong to the solar system, and are subject to the rule of the Star King. It is the universal law of gravitation which guides their path; solar attraction governs them, as it governs the movement of the planets and the small satellites. The chief point of difference between them and the planets is that their orbits are very elongated, and instead of being nearly circular, they take the elliptical form. In consequence of the nature of these orbits, the same comet may approach very near the sun, and afterwards travel from it to immense distances.
Thus, the period of the Comet of 1680 has been estimated at three thousand years. It approaches the sun, so as to be nearer to it than our moon is to us, whilst it recedes to a distance 853 times greater than the distance of the Earth from the sun. On the 17th of December, 1680, it was at its perihelion—that is, at its greatest proximity to the sun; it is now continuing its path beyond the Neptunian orbit. Its velocity varies according to its distance from the solar body. At its perihelion it travels thousands of leagues per minute; at its aphelion it does not pass over more than a few yards.
Its proximity to the Sun in its passage near that body caused Newton to think that it received a heat twenty-eight thousand times greater than that we experience at the summer solstice, and that this heat being two thousand times greater than that of red-hot iron, an iron globe of the same dimensions would be fifty thousand years entirely losing its heat. Newton added that in the end, comets will approach so near the sun that they will not be able to escape the preponderance of its attraction, and that they will fall one after the other into this brilliant body, thus keeping up the heat which it perpetually pours out into space. Such is the deplorable end assigned to comets by the author of the Principia, an end which makes De la Brétonne say to Rétif: "An immense comet, already larger than Jupiter, was again increased in its path by being blended with six other dying comets. Thus displaced from its ordinary route by these slight shocks, it did not pursue its true elliptical orbit; so that the unfortunate thing was precipitated into the devouring centre of the Sun." "It is said," added he, "that the poor comet, thus burned alive, sent forth dreadful cries!"
What does the author most nearly mean when he says “Like the planetary worlds, comets belong to the solar system, and are subject to the rule of the Star King.”?
Comets and planets are both controlled by the gravitational pull of the sun.
Planets exert a controlling force on the comets throughout the solar system.
Some planets, like pluto, might better be considered as comets that have been trapped by the Star King.
Comets have little impact on the development of the planets, and are entirely controlled by the sun.
The solar system is composed of comets, planets, and the sun.
The first thing to establish here is that when the author says “Star King,” he is being creative and somewhat whimsical with his word choice, and in fact means “sun.” From this, and the larger context of the surrounding text, it is clear that the author is talking about the “gravitational pull of the sun” when he says “are subject to the rule of the Star King.” So you may determine that the author is talking about how both comets and planets in our solar system are controlled by the gravitational pull of the sun. That this is the correct answer is most clearly shown by the sentence that immediately follows the underlined text, where the author says, “It is the universal law of gravitation which guides their path; solar attraction governs them, as it governs the movement of the planets and the small satellites.”
"Abstraction in the Sciences" by Matthew Minerd (2014)
Thinking “abstractly” is not a term that means quite the same thing in all of the sciences. Although we rarely think about this, it plays a key role in almost all of our day-to-day thought. Consider a zoologist working in a lab with many animals. When she is studying any individual tiger, she is not completely worried about the particular tiger—at least not primarily. Instead, she is trying to figure out certain characteristics of tigers in general. By meticulous testing, the zoologist carefully works out the physiology of tigers and considers what are absolutely necessary elements of their physical makeup. Even when she places a tiger in different habitats, her sight is aimed at the general condition of tigers and their needs in general.
However, things become even stranger when you start to consider how we think about mathematical objects. Consider the case of geometric figures. A triangle appears to be rather simple for most of us to think about. You can draw a triangle on a piece of paper, each side having a certain thickness and length. However when you think about this in geometry class, the triangle’s edges have no real thickness. Neither a point nor a line has a thickness for the mathematician. Such a thickness only exists on our paper, which represents the point or line. Consider also a line drawn on a piece of graph paper. Technically, there are an infinite number of points in the line. Indeed, even between 4.5 and 4.6, there are an infinite number of numbers—for example 4.55 is between them, then 4.555 between 4.55 and 4.6, and 4.5555 between 4.555 and 4.6, et cetera. In all of these cases, the mathematical reality takes on a very peculiar character when you consider it in the abstract. However, the concrete triangle remains very tangible and ordinary. Likewise, 4.6 and 4.5 inches still have 0.1 inches between them. Nevertheless, in the abstract, mathematical realities are quite strange, even stranger then the idea of “a tiger in general.”
What is meant by the underlined selection, "Her sight is aimed at"?
Her goal is discovering . . .
Her scopes are calibrated to . . .
Her guns are readied because of . . .
Her vision is clearly undermined by . . .
None of the other answers
The informal expression, "His or her sights are aimed at X," means "He or she is interested in X, " or, "He or she is paying attention to X." The scientist is here particularly interested in one thing in contrast to another, therefore her interest and goals are focused on that thing. She is "aiming her mind" at that information or goal.
Adapted from “The Influence of the Conception of Evolution on Modern Philosophy” by H. Höffding (1909) in Evolution in Modern Thought (1917 ed.)
When The Origin of Species appeared fifty years ago, Romantic speculation, Schelling's and Hegel's philosophy, still reigned on the continent, while in England, Positivism, the philosophy of Comte and Stuart Mill, represented the most important trend of thought. German speculation had much to say on evolution; it even pretended to be a philosophy of evolution. But then the word "evolution" was to be taken in an ideal, not in a real, sense. To speculative thought, the forms and types of nature formed a system of ideas, within which any form could lead us by continuous transitions to any other. It was a classificatory system which was regarded as a divine world of thought or images, within which metamorphoses could go on—a condition comparable with that in the mind of the poet when one image follows another with imperceptible changes.
Goethe's ideas of evolution, as expressed in his Metamorphosen der Pflanzen und der Thiere, belong to this category; it is, therefore, incorrect to call him a forerunner of Darwin. Schelling and Hegel held the same idea; Hegel expressly rejected the conception of a real evolution in time as coarse and materialistic. "Nature," he says, "is to be considered as a system of stages, the one necessarily arising from the other, and being the nearest truth of that from which it proceeds; but not in such a way that the one is naturally generated by the other; on the contrary \[their connection lies\] in the inner idea which is the ground of nature. The metamorphosis can be ascribed only to the notion as such, because it alone is evolution.... It has been a clumsy idea in the older as well as in the newer philosophy of nature, to regard the transformation and the transition from one natural form and sphere to a higher as an outward and actual production."
Which of the following is likely true about “Romantic speculation”?
It really was not scientific in nature.
It was emotional and had mostly to do with themes taken from love ballads.
It was surprisingly correct about scientific details.
It represented a reaction against the scientific details of evolutionary thought.
None of the other answers
This answer is quite clear if you pay attention to two sentences: (1) "It even pretended to be a philosophy of evolution"; (2) "But then the word 'evolution' was to be taken in an ideal, not in a real, sense." The idea is that this "Romantic" philosophy was more of a revelry than a real undertaking of science.
Adapted from An Introduction to Astronomy by Forest Ray Moulton (1916 ed.)
The ancient Greeks, at a period four or five hundred years preceding the common era, definitely undertook to find from systematic observation how celestial phenomena follow one another. They determined very accurately the number of days in the year, the period of the moon's revolution, and the paths of the sun and the moon among the stars; they correctly explained the cause of eclipses and learned how to predict them with a considerable degree of accuracy; they undertook to measure the distances to the heavenly bodies, and to work out a complete system that would represent their motions. The idea was current among the Greek philosophers that the earth was spherical, that it turned on its axis, and, among some of them, that it revolved around the sun. They had true science in the modern acceptance of the term, but it was largely confined to the relations among celestial phenomena.
The conception that the heavens are orderly, which they definitely formulated and acted on with remarkable success, has been extended, especially in the last two centuries, so as to include the whole universe. The extension was first made to the inanimate world and then to the more complicated phenomena associated with living beings. Every increase in carefully recorded experience has confirmed and strengthened the belief that nature is perfectly orderly, until now every one who has had an opportunity of becoming familiar with any science is firmly convinced of the truth of this principle, which is the basis of all science.
What is the purpose of the underlined sentence, "The extension was first made . . ."?
None of the other answers
To describe the history of late Greek science
To show the many ways that science could extend Greek concepts
To lay out a plan for the extension of science into new domains
To contrast developments in Greek and modern science
This sentence helps to show how the initial optimism of Greek "astronomy" was able to be extended to many other topics, noting the regularity found in many other phenomena. At best, this could be considered a history of modern science's development, though it would be a rather thin history with few real details. None of the answers really state this. The closest might be, "To contrast developments in Greek and modern science." However, the sentence really is not contrasting the two.
Adapted from "The Man-Like Apes" by T. H. Huxley in A Book of Natural History (1902, ed. David Starr Jordan)
The orangutan is found only in Sumatra and Borneo, and is common in either of these islands—in both of which it occurs always in low, flat plains, never in the mountains. It loves the densest and most sombre of the forests, which extend from the seashore inland, and thus is found only in the eastern half of Sumatra, where alone such forests occur, though, occasionally, it strays over to the western side. On the other hand, it is generally distributed through Borneo, except in the mountains, or where the population is dense. In favorable places the hunter may, by good fortune, see three or four in a day.
Except in the pairing time, the old males usually live by themselves. The old females and the immature males, on the other hand, are often met with in twos and threes, and the former occasionally have young with them, though the pregnant females usually separate themselves, and sometimes remain apart after they have given birth to their offspring. The young orangs seem to remain unusually long under their mother’s protection, probably in consequence of their slow growth. While climbing, the mother always carries her young against her bosom, the young holding on by the mother’s hair. At what time of life the orangutan becomes capable of propagation, and how long the females go with young is unknown, but it is probable that they are not adult until they arrive at ten or fifteen years of age. A female which lived for five years at Batavia had not attained one-third the height of the wild females. It is probable that, after reaching adult years, they go on growing, though slowly, and that they live to forty or fifty years. The Dyaks tell of old orangs that have not only lost all their teeth, but which find it so troublesome to climb that they maintain themselves on windfalls and juicy herbage.
What does the author most nearly mean when he says “On the other hand, it is generally distributed through Borneo, except in the mountains, or where the population is dense”?
Orangutans can be found throughout Borneo, except in mountains or near large groups of people.
Orangutans are especially found in the mountains and forests of Borneo.
Orangutans are more common on the island of Borneo than they are on the island of Sumatra.
Whenever there are large groups of people, orangutans tend to be reasonably close nearby.
Outside of the mountains, orangutans are extremely common on the island of Borneo.
“Generally distributed” is another way of saying “found throughout” and “where the population is dense” is another way of saying “where there are large groups of people.” So, in the underlined portion of text, the author is saying that “orangutans can be found throughout Borneo, except in the mountains or near large groups of people.”
Adapted from “Darwin’s Predecessors” by J. Arthur Thomson in Evolution in Modern Thought (1917 ed.)
In seeking to discover Darwin's relation to his predecessors, it is useful to distinguish the various services which he rendered to the theory of organic evolution.
As everyone knows, the general idea of the doctrine of descent is that the plants and animals of the present day are the lineal descendants of ancestors on the whole somewhat simpler, that these again are descended from yet simpler forms, and so on backwards towards the literal "Protozoa" and "Protophyta" about which we unfortunately know nothing. Now no one supposes that Darwin originated this idea, which in rudiment at least is as old as Aristotle. What Darwin did was to make it current intellectual coin. He gave it a form that commended itself to the scientific and public intelligence of the day, and he won widespread conviction by showing with consummate skill that it was an effective formula to work with, a key which no lock refused. In a scholarly, critical, and preeminently fair-minded way, admitting difficulties and removing them, foreseeing objections and forestalling them, he showed that the doctrine of descent supplied a modal interpretation of how our present-day fauna and flora have come to be.
In the second place, Darwin applied the evolution-idea to particular problems, such as the descent of man, and showed what a powerful tool it is, introducing order into masses of uncorrelated facts, interpreting enigmas both of structure and function, both bodily and mental, and, best of all, stimulating and guiding further investigation. But here again it cannot be claimed that Darwin was original. The problem of the descent or ascent of man, and other particular cases of evolution, had attracted not a few naturalists before Darwin's day, though no one \[except Herbert Spencer in the psychological domain (1855)\] had come near him in precision and thoroughness of inquiry.
In the third place, Darwin contributed largely to a knowledge of the factors in the evolution-process, especially by his analysis of what occurs in the case of domestic animals and cultivated plants, and by his elaboration of the theory of natural selection, which Alfred Russel Wallace independently stated at the same time, and of which there had been a few previous suggestions of a more or less vague description. It was here that Darwin's originality was greatest, for he revealed to naturalists the many different forms—often very subtle—which natural selection takes, and with the insight of a disciplined scientific imagination he realized what a mighty engine of progress it has been and is.
What is meant by the underlined expression, “current intellectual coin”?
A regular topic of discussion
A profitable topic to pursue
A topic with ramifications for the markets
An example of a publishable field of inquiry
None of the other answers
The best way to approach this expression is by thinking of the expression "to coin a phrase." We say that someone "coins" a phrase when he or she invents it, using it for the first time before later becomes popular. The general idea is that the phase is able to be "traded" in discourse. We can use it when talking as if such ideas are like coins in commerce. Therefore, to make something "common intellectual coin" is to make it something that can be discussed, that is, to make it a topic of general discussion.
Adapted from “Humming-Birds: As Illustrating the Luxuriance of Tropical Nature” in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The food of hummingbirds has been a matter of much controversy. All the early writers down to Buffon believed that they lived solely on the nectar of flowers, but since that time, every close observer of their habits maintains that they feed largely, and in some cases wholly, on insects. Azara observed them on the La Plata in winter taking insects out of the webs of spiders at a time and place where there were no flowers. Bullock, in Mexico, declares that he saw them catch small butterflies, and that he found many kinds of insects in their stomachs. Waterton made a similar statement. Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey. Many of them in fact may be seen catching gnats and other small insects just like fly-catchers, sitting on a dead twig over water, darting off for a time in the air, and then returning to the twig. Others come out just at dusk, and remain on the wing, now stationary, now darting about with the greatest rapidity, imitating in a limited space the evolutions of the goatsuckers, and evidently for the same end and purpose. Mr. Gosse also remarks, ” All the hummingbirds have more or less the habit, when in flight, of pausing in the air and throwing the body and tail into rapid and odd contortions. This is most observable in the Polytmus, from the effect that such motions have on the long feathers of the tail. That the object of these quick turns is the capture of insects, I am sure, having watched one thus engaged pretty close to me.”
What can we infer from the author’s use of the underlined phrase, “sometimes, but not generally”?
Hummingbirds can be found with honey in their stomachs, but it is not common.
Hummingbirds can be found with insects in their stomachs, but this is rare.
Hummingbirds can be found with both honey and insects in their stomachs, and this is what scientists observe most often.
Hummingbirds can be found with only honey in their stomachs quite often.
None of the other answers
The phrase “sometimes, but not generally” is found in the sentence, “Hundreds and perhaps thousands of specimens have since been dissected by collecting naturalists, and in almost every instance their stomachs have been found full of insects, sometimes, but not generally, mixed with a proportion of honey.” The phrase is specifically talking about the presence of honey in hummingbirds’ stomachs, not of insects, so we can eliminate the answer choice “Hummingbirds can be found with insects in their stomachs, but this is rare.” Since “not generally” means “not most of the time,” the author is saying “sometimes, but not most of the time, hummingbirds have honey in their stomachs.” This is only accurately stated by the answer choice “Hummingbirds can be found with honey in their stomachs, but it is not common.” The answer choices “Hummingbirds can be found with both honey and insects in their stomachs, and this is what scientists observe most often” and “Hummingbirds can be found with only honey in their stomachs quite often” are incorrect because neither suggests that finding a hummingbird with honey in its stomach is rare, which is what the author is saying.
Adapted from Volume Four of The Natural History of Animals: The Animal Life of the World in Its Various Aspects and Relations by James Richard Ainsworth Davis (1903)
The examples of protective resemblance so far quoted are mostly permanent adaptations to one particular sort of surrounding. There are, however, numerous animals which possess the power of adjusting their color more or less rapidly so as to harmonize with a changing environment.
Some of the best known of these cases are found among those mammals and birds that inhabit countries more or less covered with snow during a part of the year. A good instance is afforded by the Irish or variable hare, which is chiefly found in Ireland and Scotland. In summer, this looks very much like an ordinary hare, though rather grayer in tint and smaller in size, but in winter it becomes white with the exception of the black tips to the ears. Investigations that have been made on the closely allied American hare seem to show that the phenomenon is due to the growth of new hairs of white hue.
The common stoat is subject to similar color change in the northern parts of its range. In summer it is of a bright reddish brown color with the exception of the under parts, which are yellowish white, and the end of the tail, which is black. But in winter, the entire coat, save only the tip of the tail, becomes white, and in that condition the animal is known as an ermine. A similar example is afforded by the weasel. The seasonal change in the vegetarian Irish hare is purely of protective character, but in such an actively carnivorous creature as a stoat or weasel, it is aggressive as well, rendering the animal inconspicuous to its prey.
The phrase “harmonize with,” underlined in the first paragraph, most closely means __________.
match
sing in harmony with
parallel
systematize
conduct
The phrase “harmonize with” appears in this sentence in the first paragraph: “There are, however, numerous animals which possess the power of adjusting their color more or less rapidly so as to harmonize with a changing environment.” While “harmonize with” can mean “sing in harmony with,” this meaning doesn’t make sense in the context of the passage’s sentence. “Parallel,” “systematize,” and “conduct” don’t make sense either—only “match” makes sense, so it is the correct answer.
Adapted from "Recent Views as to Direct Action of Light on the Colors of Flowers and Fruits" in Tropical Nature, and Other Essays by Alfred Russel Wallace (1878)
The theory that the brilliant colors of flowers and fruits is due to the direct action of light has been supported by a recent writer by examples taken from the arctic instead of from the tropical flora. In the arctic regions, vegetation is excessively rapid during the short summer, and this is held to be due to the continuous action of light throughout the long summer days. "The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays. M. Grisebach says that during a journey in Norway he observed that the majority of deciduous trees had already, at the 60th degree of latitude, larger leaves than in Germany, while M. Ch. Martins has made a similar observation as regards the leguminous plants cultivated in Lapland.” The same writer goes on to say that all the seeds of cultivated plants acquire a deeper color the further north they are grown, white haricots becoming brown or black, and white wheat becoming brown, while the green color of all vegetation becomes more intense. The flowers also are similarly changed: those which are white or yellow in central Europe becoming red or orange in Norway. This is what occurs in the Alpine flora, and the cause is said to be the same in both—the greater intensity of the sunlight. In the one the light is more persistent, in the other more intense because it traverses a less thickness of atmosphere.
Admitting the facts as above stated to be in themselves correct, they do not by any means establish the theory founded on them; and it is curious that Grisebach, who has been quoted by this writer for the fact of the increased size of the foliage, gives a totally different explanation of the more vivid colors of Arctic flowers. He says, “We see flowers become larger and more richly colored in proportion as, by the increasing length of winter, insects become rarer, and their cooperation in the act of fecundation is exposed to more uncertain chances.” (Vegetation du Globe, col. i. p. 61—French translation.) This is the theory here adopted to explain the colors of Alpine plants, and we believe there are many facts that will show it to be the preferable one. The statement that the white and yellow flowers of temperate Europe become red or golden in the Arctic regions must we think be incorrect. By roughly tabulating the colors of the plants given by Sir Joseph Hooker as permanently Arctic, we find among fifty species with more or less conspicuous flowers, twenty-five white, twelve yellow, eight purple or blue, three lilac, and two red or pink; showing a very similar proportion of white and yellow flowers to what obtains further south.
The underlined sentence in the passage tells us that __________.
the further south you travel, the smaller plants’ leaves should be
leaf size is associated with atmospheric moisture levels
many northern-dwelling plants have small leaves
the number of leaves on a tree is related to the latitude in which it is found
if you take a plant from a northern climate into a southern climate, its leaves will shrink
The underlined sentence is "The further we advance towards the north, the more the leaves of plants increase in size as if to absorb a greater proportion of the solar rays." This has nothing to do with the number of leaves on a plant, so "the number of leaves on a tree is related to the latitude in which it is found" cannot be the correct answer. Similarly, nothing is said about moisture levels in the specified sentence, so "leaf size is associated with atmospheric moisture levels" cannot be correct either. Many northern-dwelling plants have small leaves" reverses the relationship being presented in a way that makes it incorrect; northern plants should have large leaves, not small ones. "If you take a plant from a northern climate into a southern climate, its leaves will shrink" derives too much from the statement; nothing is said about a given set of leaves changing size, just a variation amongst the sizes of many different sets of leaves. This leaves us with one remaining answer choice, the correct one: "the further south you travel, the smaller plants’ leaves should be." The specified sentence tells us that if you move north, the leaves of plants you see should get bigger. So, therefore, if you head south, the leaves you see on plants should get smaller. The correct answer states what the sentence is saying in a reverse, but still correct, way.