Finding Derivative of a Function

Help Questions

Math › Finding Derivative of a Function

Questions 1 - 10
1

Explanation

To solve this equation, we can use the power rule. To use the power rule, we lower the exponent on the variable and multiply by that exponent.

We're going to treat as since anything to the zero power is one.

Notice that since anything times zero is zero.

2

What is the derivative of ?

Explanation

To take the derivative of this equation, we can use the power rule. The power rule says that we lower the exponent of each variable by one and multiply that number by the original exponent.

Simplify.

Remember that anything to the zero power is equal to one.

3

What is the derivative of ?

Explanation

To find the first derivative, we can use the power rule. To do that, we lower the exponent on the variables by one and multiply by the original exponent.

We're going to treat as since anything to the zero power is one.

Notice that since anything times zero is zero.

4

What is the first derivative of ?

Explanation

To find the first derivative for this problem, we can use the power rule. The power rule states that we lower the exponent of each of the variables by one and multiply by that original exponent.

Remember that anything to the zero power is one.

5

What is the derivative of ?

Explanation

To get , we can use the power rule.

Since the exponent of the is , as , we lower the exponent by one and then multiply the coefficient by that original exponent:

Anything to the power is .

6

What is the derivative of ?

Explanation

To solve this problem, we can use the power rule. That means we lower the exponent of the variable by one and multiply the variable by that original exponent.

We're going to treat as , as anything to the zero power is one.

Notice that , as anything times zero is zero.

7

What is the derivative of ?

Explanation

To solve this problem, we can use the power rule. That means we lower the exponent of the variable by one and multiply the variable by that original exponent.

We're going to treat as , as anything to the zero power is one.

That means this problem will look like this:

Notice that , as anything times zero is zero.

Remember, anything to the zero power is one.

8

Explanation

This problem is best solved by using the power rule. For each variable, multiply by the exponent and reduce the exponent by one:

Treat as since anything to the zero power is one.

Remember, anything times zero is zero.

9

What is the derivative of ?

Explanation

To solve this equation, we can use the power rule. To use the power rule, we lower the exponent on the variable and multiply by that exponent.

We're going to treat as since anything to the zero power is one.

Notice that since anything times zero is zero.

That leaves us with .

Simplify.

As stated earlier, anything to the zero power is one, leaving us with:

10

What is the first derivative of ?

Explanation

To find the derivative of , we can use the power rule.

The power rule states that we multiply each variable by its current exponent and then lower the exponent of each variable by one.

Since , we're going to treat as .

Anything times zero is zero, so our final term , regardless of the power of the exponent.

Simplify what we have.

Our final solution, then, is .

Page 1 of 2
Return to subject