GMAT Quantitative › Calculating the area of a circle
Two circles are constructed; one is inscribed inside a given equilateral triangle, and the other is circumscribed about the same triangle.
The circumscribed circle has circumference . Give the area of the inscribed circle.
Examine the diagram below, which shows the triangle, its three altitudes, and the two circles.
The three altitudes of an equilateral triangle divide one another into two segments each, the longer of which is twice the length of the shorter. The length of each of the longer segments is the radius of the circumscribed circle, and the length of each of the shorter segments is the radius of the inscribed circle. Therefore, the inscribed circle has half the radius of the circumscribed circle.
The circumscribed circle has circumference , so its radius is
The inscribed circle has radius half this, or 5, so its area is
Two circles are constructed; one is inscribed inside a given regular hexagon, and the other is circumscribed about the same hexagon.
The circumscribed circle has circumference . Give the area of the inscribed circle.
Examine the diagram below, which shows the hexagon, segments from its center to a vertex and the midpoint of a side, and the two circles.
Note that the segment from the center of the hexagon to the midpoint of a side is a radius of the inscribed circle, and the segment from the center to a vertex is a radius of the circumscribed circle. The two segments and half a side of the hexagon can be proved to form a 30-60-90 triangle.
The circumscribed circle has circumference , so its radius - and the length of the hypotenuse of the right triangle -
By the 30-60-90 Theorem, the length of the shorter leg is half this, or 5. The length of the longer leg, which is the radius of the inscribed circle, is times this, or
.
The area of the inscribed circle can now be calculated:
Two circles are constructed; one is inscribed inside a given regular hexagon, and the other is circumscribed about the same hexagon.
The inscribed circle has circumference . Give the area of the circumscribed circle.
Examine the diagram below, which shows the hexagon, segments from its center to a vertex and the midpoint of a side, and the two circles.
Note that the segment from the center of the hexagon to the midpoint of a side is a radius of the inscribed circle, and the segment from the center to a vertex is a radius of the circumscribed circle. The two segments and half a side of the hexagon can be proved to form a 30-60-90 triangle.
The inscribed circle has circumference , so its radius - and the length of the longer leg of the right triangle - is
By the 30-60-90 Theorem, the length of the shorter leg is this length divided by , or
; the length of the hypotenuse, which is the radius of the circumscribed circle, is twice this, or
.
The area of the circumscribed circle can now be calculated:
Two circles are constructed; one is inscribed inside a given square, and the other is circumscribed about the same square.
The circumscribed circle has circumference . Give the area of the inscribed circle.
The correct answer is not among the other responses.
Examine the diagram below, which shows the square, segments from its center to a vertex and the midpoint of a side, and the two circles.
Note that the segment from the center of the square to the midpoint of a side is a radius of the inscribed circle, and the segment from the center to a vertex is a radius of the circumscribed circle. The two radii and half a side of the square form a 45-45-90 Triangle, so by the 45-45-90 Theorem, the radius of the inscribed circle is equal to that of the circumscribed circle divided by .
The inscribed circle has circumference , so its radius is
Divide this by to get the radius of the circumscribed circle:
The circumscribed circle has area
What is the area of a circle with a diameter of ?
The area of a circle is defined by
, where
is the radius of the circle. We are provided with the diameter
of the circle, which is twice the length of
.
If , then
Then, solving for :
Two circles are constructed; one is inscribed inside a given square, and the other is circumscribed about the same square.
The inscribed circle has circumference . Give the area of the circumscribed circle.
Examine the diagram below, which shows the square, segments from its center to a vertex and the midpoint of a side, and the two circles.
Note that the segment from the center of the square to the midpoint of a side is a radius of the inscribed circle, and the segment from the center to a vertex is a radius of the circumscribed circle. The two segments and half a side of the square form a 45-45-90 triangle, so by the 45-45-90 Theorem, the radius of the circumscribed circle is times that of the inscribed circle.
The inscribed circle has circumference , so its radius is
The circumscribed circle has radius times this, or
, so its area is
Two circles are constructed; one is inscribed inside a given equilateral triangle, and the other is circumscribed about the same triangle.
The inscribed circle has circumference . Give the area of the circumscribed circle.
Examine the diagram below, which shows the triangle, its three altitudes, and the two circles.
The three altitudes of an equilateral triangle divide one another into two segments each, the longer of which is twice the length of the shorter. The length of each of the longer segments is the radius of the circumscribed circle, and the length of each of the shorter segments is the radius of the inscribed circle. Therefore, the circumscribed circle has twice the radius of the inscribed circle.
The inscribed circle has circumference , so its radius is
The circumscribed circle has radius twice this, or 20, so its area is
If the pitcher plant Sarracenia purpurea has a circular opening with a circumference of 6 inches, what is the area of the opening?
If the pitcher plant Sarracenia purpurea has a circular opening with a circumference of 6 inches, what is the area of the opening?
We need to work backward from circumference to find area.
Circumference can be found as follows:
Use this to find "r" which we will use to find the area:
Next, find area using the following:
A circle on the coordinate plane is defined by the equation . What is the area of the circle?
Not enough information provided.
The equation of a circle centered at the origin of the coordinate plane is , where
is the radius of the circle.
The area of the circle, in turn, is defined by the equation
.
Since we are provided with the equation , we can deduce that
and that
.
What is the area of a circle with a diameter of ?
Not enough information provided.
The area of a circle is defined by
, where
is the radius of the circle. We are provided with the diameter
of the circle, which is twice the length of
.
If , then
Therefore: