Spectroscopy
Help Questions
GRE Subject Test: Chemistry › Spectroscopy
An alcohol group in a compound would result in a broad dip around what part of the infrared (IR) spectrum?
3400cm-1
1700cm-1
2800cm-1
1200cm-1
Explanation
There are a couple of key functional group spectra that you must memorize. A carbonyl group will cause a sharp dip at about 1700cm-1, and an alcohol group will cause a broad dip around 3400cm-1.
An alcohol group in a compound would result in a broad dip around what part of the infrared (IR) spectrum?
3400cm-1
1700cm-1
2800cm-1
1200cm-1
Explanation
There are a couple of key functional group spectra that you must memorize. A carbonyl group will cause a sharp dip at about 1700cm-1, and an alcohol group will cause a broad dip around 3400cm-1.
Which of the following statements is true concerning infrared (IR) spectroscopy?
IR spectroscopy is used to determine the frequency of vibrations between atoms
The fingerprint region is most easily used to determine the functional groups in the molecule
IR spectroscopy is used to determine the shape of the carbon backbone
IR spectroscopy can be used to easily determine molecular mass
Explanation
IR spectroscopy is most commonly used to determine the functional groups found in the molecule being observed. This is done by observing the vibration frequencies between atoms in the molecule. It does not easily reveal the size or shape of the molecule's carbon skeleton. Although the fingerprint region is unique for every molecule, it is very difficult to read when attempting to determine the molecule's functional groups. Most functional group peaks are observed in the functional group region adjacent to the fingerprint region.
Which of the following statements is true concerning infrared (IR) spectroscopy?
IR spectroscopy is used to determine the frequency of vibrations between atoms
The fingerprint region is most easily used to determine the functional groups in the molecule
IR spectroscopy is used to determine the shape of the carbon backbone
IR spectroscopy can be used to easily determine molecular mass
Explanation
IR spectroscopy is most commonly used to determine the functional groups found in the molecule being observed. This is done by observing the vibration frequencies between atoms in the molecule. It does not easily reveal the size or shape of the molecule's carbon skeleton. Although the fingerprint region is unique for every molecule, it is very difficult to read when attempting to determine the molecule's functional groups. Most functional group peaks are observed in the functional group region adjacent to the fingerprint region.
Approximately where would a carbonyl peak be found on an IR spectrum?
1700cm-1
1000cm-1
2800cm-1
The peak location will vary depending on the compound being analyzed.
Explanation
It is important to memorize a couple key functional groups, and where they are located on an IR spectrum. If you see a sharp peak near 1700cm-1, you can assume it is made by a carbonyl group.
Similarly, a wide peak around 3000cm-1 will be made by a hydroxyl group.
Approximately where would a carbonyl peak be found on an IR spectrum?
1700cm-1
1000cm-1
2800cm-1
The peak location will vary depending on the compound being analyzed.
Explanation
It is important to memorize a couple key functional groups, and where they are located on an IR spectrum. If you see a sharp peak near 1700cm-1, you can assume it is made by a carbonyl group.
Similarly, a wide peak around 3000cm-1 will be made by a hydroxyl group.
Observe the underlined/bold hydrogen. In HNMR, how many spectral lines will that bolded hydrogen be split into?
lines (doublet)
lines (septet)
lines (multiplet)
line (singlet)
lines (triplet)
Explanation
The answer is:
Within 1H NMR spectroscopy there are a couple important factors to understand, including the ppm shift (delta) and the splitting pattern. Here we are focusing on the splitting pattern for individual hydrogens. This is important for it lays the groundwork for understanding the patterns of peaks seen on large compound NMR’s.
When determining the splitting of any hydrogen you must use the n+1 rule. Before going into that rule we must understand two things, 1. only nonequivalent hydrogens (protons) couple and 2. usually they only couple to other hydrogens (protons) attached to adjacent carbons. Nonequivalent means the protons occupy their own unique spatial environment with different atoms surrounding them. Typically two hydrogens attached to the same carbon are equivalent (though this isn’t always the case and you must think about where the hydrogens are located in space and see whether they are adjacent to different or similar chemical groups).
The n+1 rule is performed as follows. N stands for the number of equivalent protons that are not equivalent to the proton of interest (the one we are trying to determine the splitting for). We multiply together each group of protons that are nonequivalent to the proton of interest. For example, lets say there are two groups of protons that are nonequivalent to the proton of interest, in group A there are 2 protons, and in group B there are 3 protons. We would use the n+1 rule for group A and get (2+1) = 3 and for group B get (3+1) = 4. We would then multiply these two numbers together to get the splitting for the proton of interest, thus 3 x 4 = 12 lines that the proton of interest would be split into. Proper use of this rule should allow you to get all NMR splitting questions correct (and elevate your understanding of why a certain NMR printout looks the way it does).
Observe the underlined/bold hydrogen. In HNMR, how many spectral lines will that bolded hydrogen be split into?
lines (doublet)
lines (septet)
lines (multiplet)
line (singlet)
lines (triplet)
Explanation
The answer is:
Within 1H NMR spectroscopy there are a couple important factors to understand, including the ppm shift (delta) and the splitting pattern. Here we are focusing on the splitting pattern for individual hydrogens. This is important for it lays the groundwork for understanding the patterns of peaks seen on large compound NMR’s.
When determining the splitting of any hydrogen you must use the n+1 rule. Before going into that rule we must understand two things, 1. only nonequivalent hydrogens (protons) couple and 2. usually they only couple to other hydrogens (protons) attached to adjacent carbons. Nonequivalent means the protons occupy their own unique spatial environment with different atoms surrounding them. Typically two hydrogens attached to the same carbon are equivalent (though this isn’t always the case and you must think about where the hydrogens are located in space and see whether they are adjacent to different or similar chemical groups).
The n+1 rule is performed as follows. N stands for the number of equivalent protons that are not equivalent to the proton of interest (the one we are trying to determine the splitting for). We multiply together each group of protons that are nonequivalent to the proton of interest. For example, lets say there are two groups of protons that are nonequivalent to the proton of interest, in group A there are 2 protons, and in group B there are 3 protons. We would use the n+1 rule for group A and get (2+1) = 3 and for group B get (3+1) = 4. We would then multiply these two numbers together to get the splitting for the proton of interest, thus 3 x 4 = 12 lines that the proton of interest would be split into. Proper use of this rule should allow you to get all NMR splitting questions correct (and elevate your understanding of why a certain NMR printout looks the way it does).
Which of the following functional groups exhibits the highest frequency in an infrared (IR) spectrum?
Alcohol
Nitrile
Ester
Ketone
Aldehyde
Explanation
An alcohol (-ROH) exhibits a strong, broad absorbance peak at about 3500cm-1. A nitrile's (-RCN) characteristic absorbance peak is at about 2200cm-1. Carbonyl groups have strong, sharp peaks from 1700cm-1 to 1750cm-1, depending on the type of carbonyl group. For instance, an ester (-RCO2R'-) has an absorbance at about 1750cm-1, while a ketone (-ROR'-) has an absorbance at around 1710cm-1.
Which of the following functional groups exhibits the highest frequency in an infrared (IR) spectrum?
Alcohol
Nitrile
Ester
Ketone
Aldehyde
Explanation
An alcohol (-ROH) exhibits a strong, broad absorbance peak at about 3500cm-1. A nitrile's (-RCN) characteristic absorbance peak is at about 2200cm-1. Carbonyl groups have strong, sharp peaks from 1700cm-1 to 1750cm-1, depending on the type of carbonyl group. For instance, an ester (-RCO2R'-) has an absorbance at about 1750cm-1, while a ketone (-ROR'-) has an absorbance at around 1710cm-1.