Grade 8

Help Questions

8th Grade Math › Grade 8

Questions 1 - 10
1

Are the two shapes shown in the coordinate plane congruent? If so, what transformation did the red shape undergo from the orange shape?

7

No

Yes, translation to the left

Yes, rotation

Yes, refection over the y-axis

Explanation

In order to solve this problem, we first need to know what "congruent" means. For two shapes to be congruent, they need to be the same shape and the same size. The shape can go through a transformation—rotation, translation, or reflection—but nothing else about the original shape can be changed for two shapes to be congruent.

Also, let's recall the types of transformations:

Rotation: A rotation means turning an image, shape, line, etc. around a central point.

Translation: A translation means moving or sliding an image, shape, line, etc. over a plane.

Reflection: A reflection mean flipping an image, shape, line, etc. over a central line.

For this question, we can tell that the triangles are not the same size, the red triangle is smaller; thus, the triangles are not congruent.

2

Are the two shapes shown in the coordinate plane congruent? If so, what transformation did the red shape undergo from the orange shape?

3

Yes, translation to the left

Yes, reflection over the x-axis

Yes, rotation

No

Explanation

In order to solve this problem, we first need to know what "congruent" means. For two shapes to be congruent, they need to be the same shape and the same size. The shape can go through a transformation—rotation, translation, or reflection—but nothing else about the original shape can be changed for two shapes to be congruent.

Also, let's recall the types of transformations:

Rotation: A rotation means turning an image, shape, line, etc. around a central point.

Translation: A translation means moving or sliding an image, shape, line, etc. over a plane.

Reflection: A reflection mean flipping an image, shape, line, etc. over a central line.

For this question, we can tell that the triangles are the same size; thus, the triangles are congruent. The red triangle has been moved to the left; thus, the triangle has been translated to the left.

The triangle has not undergone a reflection over the x-axis, because the triangle didn't flip over the x-axis. Also, the triangle has not been rotated because that rotation would have caused the triangle to have its top point facing left or right, not up and down.

3

In order to get to work, Jeff leaves home and drives 4 miles due north, then 3 miles due east, followed by 6 miles due north and, finally, 7 miles due east. What is the straight line distance from Jeff’s work to his home?

2√5

11

10√2

15

6√2

Explanation

Jeff drives a total of 10 miles north and 10 miles east. Using the Pythagorean theorem (a2+b2=c2), the direct route from Jeff’s home to his work can be calculated. 102+102=c2. 200=c2. √200=c. √100Ÿ√2=c. 10√2=c

4

Evaluate: \dpi{100} (3^{3})^{2}

\dpi{100} 3^{6}

\dpi{100} 3^{5}

\dpi{100} 243

\dpi{100} 729

Explanation

A power raised to a power indicates that you multiply the two powers.

\dpi{100} (3^{3})^{2}=3^{3\cdot 2}=3^{6}

5

Which of the following answer choices displays an irrational number?

Explanation

Our answer choices consist of two types of numbers: rational numbers and irrational numbers. In order to correctly answer this question, we need to know the difference between the two types of numbers.

Rational numbers are numbers that we use most often, and can be written as a simple fraction.

Irrational numbers cannot be written as fractions, and are numbers that have decimal places that never repeat or end.

In this case, is our only irrational number because it cannot be written as a simple fraction.

6

What is the slope of the line that passes through the points and ?

Explanation

The slope of a line is sometimes referred to as "rise over run." This is because the formula for slope is the change in y-value (rise) divided by the change in x-value (run). Therefore, if you are given two points, and , the slope of their line can be found using the following formula:

This gives us .

7

In order to get to work, Jeff leaves home and drives 4 miles due north, then 3 miles due east, followed by 6 miles due north and, finally, 7 miles due east. What is the straight line distance from Jeff’s work to his home?

2√5

11

10√2

15

6√2

Explanation

Jeff drives a total of 10 miles north and 10 miles east. Using the Pythagorean theorem (a2+b2=c2), the direct route from Jeff’s home to his work can be calculated. 102+102=c2. 200=c2. √200=c. √100Ÿ√2=c. 10√2=c

8

Are the two shapes shown in the coordinate plane congruent? If so, what transformation did the red shape undergo from the orange shape?

3

Yes, translation to the left

Yes, reflection over the x-axis

Yes, rotation

No

Explanation

In order to solve this problem, we first need to know what "congruent" means. For two shapes to be congruent, they need to be the same shape and the same size. The shape can go through a transformation—rotation, translation, or reflection—but nothing else about the original shape can be changed for two shapes to be congruent.

Also, let's recall the types of transformations:

Rotation: A rotation means turning an image, shape, line, etc. around a central point.

Translation: A translation means moving or sliding an image, shape, line, etc. over a plane.

Reflection: A reflection mean flipping an image, shape, line, etc. over a central line.

For this question, we can tell that the triangles are the same size; thus, the triangles are congruent. The red triangle has been moved to the left; thus, the triangle has been translated to the left.

The triangle has not undergone a reflection over the x-axis, because the triangle didn't flip over the x-axis. Also, the triangle has not been rotated because that rotation would have caused the triangle to have its top point facing left or right, not up and down.

9

Are the two shapes shown in the coordinate plane congruent? If so, what transformation did the red shape undergo from the orange shape?

5

No

Yes, translation down and to the left

Yes, rotation

Yes, refection over the x-axis

Explanation

In order to solve this problem, we first need to know what "congruent" means. For two shapes to be congruent, they need to be the same shape and the same size. The shape can go through a transformation—rotation, translation, or reflection—but nothing else about the original shape can be changed for two shapes to be congruent.

Also, let's recall the types of transformations:

Rotation: A rotation means turning an image, shape, line, etc. around a central point.

Translation: A translation means moving or sliding an image, shape, line, etc. over a plane.

Reflection: A reflection mean flipping an image, shape, line, etc. over a central line.

For this question, we can tell that the triangles are not the same size, the red triangle is smaller; thus, the triangles are not congruent.

10

Are the two shapes shown in the coordinate plane congruent? If so, what transformation did the red shape undergo from the orange shape?

8

No

Yes, translation down

Yes, rotation

Yes, refection over the x-axis

Explanation

In order to solve this problem, we first need to know what "congruent" means. For two shapes to be congruent, they need to be the same shape and the same size. The shape can go through a transformation—rotation, translation, or reflection—but nothing else about the original shape can be changed for two shapes to be congruent.

Also, let's recall the types of transformations:

Rotation: A rotation means turning an image, shape, line, etc. around a central point.

Translation: A translation means moving or sliding an image, shape, line, etc. over a plane.

Reflection: A reflection mean flipping an image, shape, line, etc. over a central line.

For this question, we can tell that the triangles are not the same size, the red triangle is narrower; thus, the triangles are not congruent.

Page 1 of 100
Return to subject