Common Core: 7th Grade Math : Identify the Constant of Prportionality: CCSS.Math.Content.7.RP.A.2b

Study concepts, example questions & explanations for Common Core: 7th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

1 2 3 5 Next →

Example Question #153 : Ratios & Proportional Relationships

Identify the constant of proportionality (i.e. the unit rate) in the provided graph. 


11

Possible Answers:

Correct answer:

Explanation:

In order to determine the constant of proportionality, we need to divide the quantities from the  coordinate by the quantities from the  coordinate. In order for the graph to show a direct proportion, each quotient should equal the same value. 

First, we need to find a series of coordinate points:

11 1

Now that we have a series of coordinate points, we can divide to find the constant of proportionality:

All of the quotients are the same value; therefore, this graph does show direct proportion and the constant of proportionality is .

Example Question #154 : Ratios & Proportional Relationships

Identify the constant of proportionality (i.e. the unit rate) in the provided graph. 

13

Possible Answers:

Correct answer:

Explanation:

In order to determine the constant of proportionality, we need to divide the quantities from the  coordinate by the quantities from the  coordinate. In order for the graph to show a direct proportion, each quotient should equal the same value. 

First, we need to find a series of coordinate points:

13 1

Now that we have a series of coordinate points, we can divide to find the constant of proportionality:

All of the quotients are the same value; therefore, this graph does show direct proportion and the constant of proportionality is .

Example Question #153 : Ratios & Proportional Relationships

Identify the constant of proportionality (i.e. the unit rate) in the provided graph. 


12

Possible Answers:

Correct answer:

Explanation:

In order to determine the constant of proportionality, we need to divide the quantities from the  coordinate by the quantities from the  coordinate. In order for the graph to show a direct proportion, each quotient should equal the same value. 

First, we need to find a series of coordinate points:

12 1

Now that we have a series of coordinate points, we can divide to find the constant of proportionality:

All of the quotients are the same value; therefore, this graph does show direct proportion and the constant of proportionality is .

Example Question #156 : Ratios & Proportional Relationships

Identify the constant of proportionality (i.e. the unit rate) in the provided graph. 


8

Possible Answers:

Correct answer:

Explanation:

In order to determine the constant of proportionality, we need to divide the quantities from the  coordinate by the quantities from the  coordinate. In order for the graph to show a direct proportion, each quotient should equal the same value. 

First, we need to find a series of coordinate points:

8 1

Now that we have a series of coordinate points, we can divide to find the constant of proportionality:

All of the quotients are the same value; therefore, this graph does show direct proportion and the constant of proportionality is .

Example Question #157 : Ratios & Proportional Relationships

Identify the constant of proportionality (i.e. the unit rate) in the provided graph. 


7

Possible Answers:

Correct answer:

Explanation:

In order to determine the constant of proportionality, we need to divide the quantities from the  coordinate by the quantities from the  coordinate. In order for the graph to show a direct proportion, each quotient should equal the same value. 

First, we need to find a series of coordinate points:

7 1

Now that we have a series of coordinate points, we can divide to find the constant of proportionality:

All of the quotients are the same value; therefore, this graph does show direct proportion and the constant of proportionality is .

Example Question #158 : Ratios & Proportional Relationships

Identify the constant of proportionality (i.e. the unit rate) in the provided graph. 


5

Possible Answers:

Correct answer:

Explanation:

In order to determine the constant of proportionality, we need to divide the quantities from the  coordinate by the quantities from the  coordinate. In order for the graph to show a direct proportion, each quotient should equal the same value. 

First, we need to find a series of coordinate points:

5 1

Now that we have a series of coordinate points, we can divide to find the constant of proportionality:

All of the quotients are the same value; therefore, this graph does show direct proportion and the constant of proportionality is .

Example Question #41 : Identify The Constant Of Prportionality: Ccss.Math.Content.7.Rp.A.2b

Identify the constant of proportionality (i.e. the unit rate) in the provided graph. 


3

Possible Answers:

Correct answer:

Explanation:

In order to determine the constant of proportionality, we need to divide the quantities from the  coordinate by the quantities from the  coordinate. In order for the graph to show a direct proportion, each quotient should equal the same value. 

First, we need to find a series of coordinate points:

3 1

Now that we have a series of coordinate points, we can divide to find the constant of proportionality:

All of the quotients are the same value; therefore, this graph does show direct proportion and the constant of proportionality is .

Example Question #160 : Ratios & Proportional Relationships

Identify the constant of proportionality (i.e. the unit rate) in the provided graph. 


10

Possible Answers:

Correct answer:

Explanation:

In order to determine the constant of proportionality, we need to divide the quantities from the  coordinate by the quantities from the  coordinate. In order for the graph to show a direct proportion, each quotient should equal the same value. 

First, we need to find a series of coordinate points:

10 1

Now that we have a series of coordinate points, we can divide to find the constant of proportionality:

All of the quotients are the same value; therefore, this graph does show direct proportion and the constant of proportionality is .

1 2 3 5 Next →
Learning Tools by Varsity Tutors