Algorithm Analysis
Help Questions
AP Computer Science A › Algorithm Analysis
Consider the following code:
What is the expected runtime of the code (in Big-O notation?)
Explanation
The run-time can best be analyzed by breaking the code down by line. The line iterating the value of sum is performed in constant time, or O(1). This constant time operation is performed n times in the for loop, leading to a run time that is proportional to n, or O(n).
Consider the following code:
What is the expected runtime of the code (in Big-O notation?)
Explanation
The run-time can best be analyzed by breaking the code down by line. The line iterating the value of sum is performed in constant time, or O(1). This constant time operation is performed n times in the for loop, leading to a run time that is proportional to n, or O(n).
Consider the following code:
What is the expected runtime of the code (in Big-O notation?)
Explanation
The run-time can best be analyzed by breaking the code down by line. The line iterating the value of sum is performed in constant time, or O(1). This constant time operation is performed n times in the for loop, leading to a run time that is proportional to n, or O(n).
Consider the following code:
What is the expected runtime of the code (in Big-O notation?)
Explanation
The run-time can best be analyzed by breaking the code down by line. The line iterating the value of sum is performed in constant time, or O(1). This constant time operation is performed n times in the for loop, leading to a run time that is proportional to n, or O(n).
Consider the following code:
What is the expected runtime of the code (in Big-O notation?)
Explanation
The run-time can best be analyzed by breaking the code down by line. The line iterating the value of sum is performed in constant time, or O(1). This constant time operation is performed n times in the for loop, leading to a run time that is proportional to n, or O(n).
Consider the following code:
What is the expected runtime of the code (in Big-O notation?)
Explanation
The run-time can best be analyzed by breaking the code down by line. The line iterating the value of sum is performed in constant time, or O(1). This constant time operation is performed n times in the for loop, leading to a run time that is proportional to n, or O(n).
Consider the following code:
What is the expected runtime of the code (in Big-O notation?)
Explanation
The run-time can best be analyzed by breaking the code down by line. The line iterating the value of sum is performed in constant time, or O(1). This constant time operation is performed n times in the for loop, leading to a run time that is proportional to n, or O(n).
Consider the following code:
What is the expected runtime of the code (in Big-O notation?)
Explanation
The run-time can best be analyzed by breaking the code down by line. The line iterating the value of sum is performed in constant time, or O(1). This constant time operation is performed n times in the for loop, leading to a run time that is proportional to n, or O(n).
Consider the following code:
What is the expected runtime of the code (in Big-O notation?)
Explanation
The run-time can best be analyzed by breaking the code down by line. The line iterating the value of sum is performed in constant time, or O(1). This constant time operation is performed n times in the for loop, leading to a run time that is proportional to n, or O(n).
Consider the following code:
What is the expected runtime of the code (in Big-O notation?)
Explanation
The run-time can best be analyzed by breaking the code down by line. The line iterating the value of sum is performed in constant time, or O(1). This constant time operation is performed n times in the for loop, leading to a run time that is proportional to n, or O(n).