Geometry › Coordinate Geometry
has as its graph a vertical parabola on the coordinate plane. You are given that
and
, but you are not given
.
Which of the following can you determine without knowing the value of ?
I) Whether the graph is concave upward or concave downward
II) The location of the vertex
III) The location of the -intercept
IV) The locations of the -intercepts, if there are any
V) The equation of the line of symmetry
I and III only
I and V only
I, II, and V only
I, III, and IV only
III and IV only
I) The orientation of the parabola is determined solely by the sign of . Since
, the parabola can be determined to be concave downward.
II and V) The -coordinate of the vertex is
; since you are not given
, you cannot find this. Also, since the line of symmetry has equation
, for the same reason, you cannot find this either.
III) The -intercept is the point at which
; by substitution, it can be found to be at
.
known to be equal to 9, so the
-intercept can be determined to be
.
IV) The -intercept(s), if any, are the point(s) at which
. This is solvable using the quadratic formula
Since all three of and
must be known for this to be evaluated, and only
is known, the
-intercept(s) cannot be identified.
The correct response is I and III only.
Give the domain of the function
The set of all real numbers
The square root of a real number is defined only for nonnegative radicands; therefore, the domain of is exactly those values for which the radicand
is nonnegative. Solve the inequality:
The domain of is
.
Define a function as follows:
Give the vertical aysmptote of the graph of .
The graph of does not have a vertical asymptote.
Since any number, positive or negative, can appear as an exponent, the domain of the function is the set of all real numbers; in other words,
is defined for all real values of
. It is therefore impossible for the graph to have a vertical asymptote.
Define a function as follows:
Give the horizontal aysmptote of the graph of .
The horizontal asymptote of an exponential function can be found by noting that a positive number raised to any power must be positive. Therefore, and
for all real values of
. The graph will never crosst the line of the equatin
, so this is the horizontal asymptote.
In which quadrant does the complex number lie?
If we graphed the given complex number on a set of real-imaginary axes, we would plot the real value of the complex number as the x coordinate, and the imaginary value of the complex number as the y coordinate. Because the given complex number is as follows:
We are essentially doing the same as plotting the point on a set of Cartesian axes. We move
units right in the x direction, and
units down in the y direction, which puts us in the fourth quadrant, or in terms of Roman numerals:
Give the domain of the function
The set of all real numbers
The function is defined for those values of
for which the radicand is nonnegative - that is, for which
Subtract 25 from both sides:
Since the square root of a real number is always nonnegative,
for all real numbers . Since the radicand is always positive, this makes the domain of
the set of all real numbers.
has as its graph a vertical parabola on the coordinate plane. You are given that
and
, but you are not given
.
Which of the following can you determine without knowing the value of ?
I) Whether the graph is concave upward or concave downward
II) The location of the vertex
III) The location of the -intercept
IV) The locations of the -intercepts, if there are any
V) The equation of the line of symmetry
I and III only
I and V only
I, II, and V only
I, III, and IV only
III and IV only
I) The orientation of the parabola is determined solely by the sign of . Since
, the parabola can be determined to be concave downward.
II and V) The -coordinate of the vertex is
; since you are not given
, you cannot find this. Also, since the line of symmetry has equation
, for the same reason, you cannot find this either.
III) The -intercept is the point at which
; by substitution, it can be found to be at
.
known to be equal to 9, so the
-intercept can be determined to be
.
IV) The -intercept(s), if any, are the point(s) at which
. This is solvable using the quadratic formula
Since all three of and
must be known for this to be evaluated, and only
is known, the
-intercept(s) cannot be identified.
The correct response is I and III only.
The point on the coordinate plane with coordinates lies _____
on an axis.
in Quadrant IV.
in Quadrant III.
in Quadrant I.
in Quadrant II.
On the coordinate plane, a point with 0 as one of its coordinates lies on an axis.