## Example Questions

### Example Question #21 : Coordinate Geometry

Which of the following lines is parallel to:      Explanation:

First write the equation in slope intercept form. Add to both sides to get . Now divide both sides by to get . The slope of this line is , so any line that also has a slope of would be parallel to it. The correct answer is .

### Example Question #1 : How To Find Out If Lines Are Parallel

Which pair of linear equations represent parallel lines?            Explanation:

Parallel lines will always have equal slopes. The slope can be found quickly by observing the equation in slope-intercept form and seeing which number falls in the " " spot in the linear equation We are looking for an answer choice in which both equations have the same value. Both lines in the correct answer have a slope of 2, therefore they are parallel.

### Example Question #2 : How To Find Out If Lines Are Parallel

Which of the following equations represents a line that is parallel to the line represented by the equation ?      Explanation:

Lines are parallel when their slopes are the same.

First, we need to place the given equation in the slope-intercept form.   Because the given line has the slope of , the line parallel to it must also have the same slope.

### Example Question #2 : How To Find Out If Lines Are Parallel

Line passes through the points and . Line passes through the point and has a of . Are the two lines parallel? If so, what is their slope? If not, what are their slopes?

No, the lines are not parallel. Line has a slope of and line has a slope of .

Yes, the lines are parallel with a slope of .

Yes, the lines are parallel with a slope of .

No, the lines are not parallel. Line has a slope of and line has slope .

Yes, the lines are parallel with a slope of .

Explanation:

Finding slope for these two lines is as easy as applying the slope formula to the points each line contains. We know that line contains points and , so we can apply our slope formula directly (pay attention to negative signs!) .

Line contains point and, since the y-intercept is always on the vertical axis, . Thus: The two lines have the same slope, , and are thus identical.

### Example Question #26 : Parallel Lines

Line is described by the equation . Line passes through the points and . Are the two lines parallel? If so, what is their slope? If not, what are their slopes?

No, the lines are not parallel. Line has slope and line has slope .

No, the lines are not parallel. Line has slope and line has slope .

Yes, the lines are parallel, and both lines have slope .

Yes, the lines are parallel, and both lines have slope .

No, the lines are not parallel. Line has slope and line has slope .

Explanation:

We are told at the beginning of this problem that line is described by . Since is our slope-intecept form, we can see that for this line. Since parallel lines have equal slopes, we must determine if line has a slope of .

Since we know that passes through points and , we can apply our slope formula: Thus, the slope of line is 1. As the two lines do not have equal slopes, the lines are not parallel.

### All ACT Math Resources 