Distributive Property

Help Questions

ACT Math › Distributive Property

Questions 1 - 10
1

For all x, (4_x –_ 3)2 =

12_x_2 + 24_x –_ 9

16_x_2 – 9

16_x_2 + 9

16_x_2 + 24_x_ + 9

16_x_2 – 24_x_ + 9

Explanation

To solve this problem, you should FOIL: (4_x_ – 3)(4_x_ – 3) = 16_x_2 – 12_x –_ 12_x_ + 9 = 16_x_2 – 24_x_ + 9.

2

For all x, (4_x –_ 3)2 =

12_x_2 + 24_x –_ 9

16_x_2 – 9

16_x_2 + 9

16_x_2 + 24_x_ + 9

16_x_2 – 24_x_ + 9

Explanation

To solve this problem, you should FOIL: (4_x_ – 3)(4_x_ – 3) = 16_x_2 – 12_x –_ 12_x_ + 9 = 16_x_2 – 24_x_ + 9.

3

For all x, (4_x –_ 3)2 =

12_x_2 + 24_x –_ 9

16_x_2 – 9

16_x_2 + 9

16_x_2 + 24_x_ + 9

16_x_2 – 24_x_ + 9

Explanation

To solve this problem, you should FOIL: (4_x_ – 3)(4_x_ – 3) = 16_x_2 – 12_x –_ 12_x_ + 9 = 16_x_2 – 24_x_ + 9.

4

Expand the following expression:

Explanation

FOIL and we get:

Then multiply it by and get:

5

Multiply the complex numbers:

(3+4i)(2+8i).

-26+32i

-24+30i

26+32i

-26-32i

22+32i

Explanation

Expanding out gives 6+24i+8i+32i^{2}.

We know that i=\sqrt{-1} so when we substitute that in we get 6+32i-32.

6

Expand the following expression:

Explanation

FOIL and we get:

Then multiply it by and get:

7

Multiply the complex numbers:

(3+4i)(2+8i).

-26+32i

-24+30i

26+32i

-26-32i

22+32i

Explanation

Expanding out gives 6+24i+8i+32i^{2}.

We know that i=\sqrt{-1} so when we substitute that in we get 6+32i-32.

8

Expand the following expression:

Explanation

FOIL and we get:

Then multiply it by and get:

9

Multiply the complex numbers:

(3+4i)(2+8i).

-26+32i

-24+30i

26+32i

-26-32i

22+32i

Explanation

Expanding out gives 6+24i+8i+32i^{2}.

We know that i=\sqrt{-1} so when we substitute that in we get 6+32i-32.

10

The expression is equivalent to __________.

Explanation

This question is asking you to multiply two binomials. You can use the grid method for FOIL.

Foil

Page 1 of 19
Return to subject