# Common Core: High School - Number and Quantity : Vector Multiplication (Matrices being Transformations of Vectors): CCSS.Math.Content.HSN-VM.C.11

## Example Questions

### Example Question #1 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Not possible

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

Now we apply the above to get the following solution.

### Example Question #2 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

Now we apply the above to get the following solution.

### Example Question #3 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

Now we apply the above to get the following solution.

### Example Question #4 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

Now we apply the above to get the following solution.

### Example Question #5 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

Now we apply the above to get the following solution.

### Example Question #6 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

Now we apply the above to get the following solution.

### Example Question #7 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

Now we apply the above to get the following solution.

### Example Question #8 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

Now we apply the above to get the following solution.

### Example Question #9 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

Now we apply the above to get the following solution.

Calculate