Common Core: 8th Grade Math : Understand Similarity of Two-Dimensional Figures: CCSS.Math.Content.8.G.A.4

Study concepts, example questions & explanations for Common Core: 8th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Understand Similarity Of Two Dimensional Figures: Ccss.Math.Content.8.G.A.4

Are the two dimensional shapes shown on the coordinate plane provided similar? If yes, do the shapes show a transformation or a dilation? 


11

Possible Answers:

Yes, both a transformation and dilation

No

Yes, transformation

Yes, dilation 

Correct answer:

No

Explanation:

In order for two shapes to be similar, they must be the same shape. If the shapes are the same, but are a different size or facing a different direction, then the shapes can still be similar if and only if they have gone through a dilation or a transformation. 

Let's recall our key terms:

Dilation: A dilation creates an image of the same shape, but of a different size. Dilations are always done with a certain scale factor, and the scale factor must be equal for all sides of the shape. 

Transformation: A transformation can be described in three ways:

  • Rotation: A rotation means turning an image, shape, line, etc. around a central point.
  • Translation: A translation means moving or sliding an image, shape, line, etc. over a plane.
  • Reflection: A reflection mean flipping an image, shape, line, etc. over a central line. 

The yellow rectangle is smaller than the blue rectangle, but a dilation did not occur because because the scale factor for the length and the width are not equal to each other; thus, the shapes are not similar. 

 

Example Question #12 : Understand Similarity Of Two Dimensional Figures: Ccss.Math.Content.8.G.A.4

Are the two dimensional shapes shown on the coordinate plane provided similar? If yes, do the shapes show a transformation or a dilation? 


12

Possible Answers:

Yes, transformation

Yes, both a transformation and dilation 

No

Yes, dilation 

Correct answer:

No

Explanation:

In order for two shapes to be similar, they must be the same shape. If the shapes are the same, but are a different size or facing a different direction, then the shapes can still be similar if and only if they have gone through a dilation or a transformation. 

Let's recall our key terms:

Dilation: A dilation creates an image of the same shape, but of a different size. Dilations are always done with a certain scale factor, and the scale factor must be equal for all sides of the shape. 

Transformation: A transformation can be described in three ways:

  • Rotation: A rotation means turning an image, shape, line, etc. around a central point.
  • Translation: A translation means moving or sliding an image, shape, line, etc. over a plane.
  • Reflection: A reflection mean flipping an image, shape, line, etc. over a central line. 

The yellow rectangle is smaller than the blue rectangle, but a dilation did not occur because because the scale factor for the length and the width are not equal to each other; thus, the shapes are not similar. 

 

Learning Tools by Varsity Tutors