# Common Core: 5th Grade Math : Interpret the Product (a/b) × q as a Part of a Partition of q into b Equal Parts: CCSS.Math.Content.5.NF.B.4a

## Example Questions

### Example Question #41 : Interpret The Product (A/B) × Q As A Part Of A Partition Of Q Into B Equal Parts: Ccss.Math.Content.5.Nf.B.4a

Drew lives  of a mile away from his friend's house. He walked  of the way there and then stopped to tie his shoe. How far did he travel before he stopped to tie his shoe?

Explanation:

A keyword in our question that gives us a clue that we are going to multiply to solve this problem is the word "of".  of the way to his friends house he stopped.

We know that his friend lives  of a mile away from him so we can set up our multiplication problem.

We can set up a tiled area model to help us solve the problem.

We use the denominators for the dimensions of our area model, and we use the numerators to fill parts of the area model.

We make the area model  by  because those are the denominators of our fractions. We shade up  and over , because those are the numerators of our fractions. Our answer is a fraction made up of the boxes that are shaded (the numerator) and the total tiles in the area model (the denominator).

### Example Question #42 : Interpret The Product (A/B) × Q As A Part Of A Partition Of Q Into B Equal Parts: Ccss.Math.Content.5.Nf.B.4a

Armen lives  of a mile away from his friend's house. He walked  of the way there and then stopped to tie his shoe. How far did he travel before he stopped to tie his shoe?

Explanation:

A keyword in our question that gives us a clue that we are going to multiply to solve this problem is the word "of".  of the way to his friends house he stopped.

We know that his friend lives  of a mile away from him so we can set up our multiplication problem.

We can set up a tiled area model to help us solve the problem.

We use the denominators for the dimensions of our area model, and we use the numerators to fill parts of the area model.

We make the area model  by  because those are the denominators of our fractions. We shade up  and over , because those are the numerators of our fractions. Our answer is a fraction made up of the boxes that are shaded (the numerator) and the total tiles in the area model (the denominator).

### Example Question #1161 : Common Core Math: Grade 5

Brett lives  of a mile away from his friend's house. He walked  of the way there and then stopped to tie his shoe. How far did he travel before he stopped to tie his shoe?

Explanation:

A keyword in our question that gives us a clue that we are going to multiply to solve this problem is the word "of".  of the way to his friends house he stopped.

We know that his friend lives  of a mile away from him so we can set up our multiplication problem.

We can set up a tiled area model to help us solve the problem.

We use the denominators for the dimensions of our area model, and we use the numerators to fill parts of the area model.

We make the area model  by  because those are the denominators of our fractions. We shade up  and over , because those are the numerators of our fractions. Our answer is a fraction made up of the boxes that are shaded (the numerator) and the total tiles in the area model (the denominator).

### Example Question #1162 : Common Core Math: Grade 5

Steve lives  of a mile away from his friend's house. He walked  of the way there and then stopped to tie his shoe. How far did he travel before he stopped to tie his shoe?

Explanation:

A keyword in our question that gives us a clue that we are going to multiply to solve this problem is the word "of".  of the way to his friends house he stopped.

We know that his friend lives  of a mile away from him so we can set up our multiplication problem.

We can set up a tiled area model to help us solve the problem.

We use the denominators for the dimensions of our area model, and we use the numerators to fill parts of the area model.

We make the area model  by  because those are the denominators of our fractions. We shade up  and over , because those are the numerators of our fractions. Our answer is a fraction made up of the boxes that are shaded (the numerator) and the total tiles in the area model (the denominator).

### Example Question #301 : Fractions

David lives  of a mile away from his friend's house. He walked  of the way there and then stopped to tie his shoe. How far did he travel before he stopped to tie his shoe?

Explanation:

A keyword in our question that gives us a clue that we are going to multiply to solve this problem is the word "of".  of the way to his friends house he stopped.

We know that his friend lives  of a mile away from him so we can set up our multiplication problem.

We can set up a tiled area model to help us solve the problem.

We use the denominators for the dimensions of our area model, and we use the numerators to fill parts of the area model.

We make the area model  by  because those are the denominators of our fractions. We shade up  and over , because those are the numerators of our fractions. Our answer is a fraction made up of the boxes that are shaded (the numerator) and the total tiles in the area model (the denominator).

### Example Question #42 : Interpret The Product (A/B) × Q As A Part Of A Partition Of Q Into B Equal Parts: Ccss.Math.Content.5.Nf.B.4a

Matt lives  of a mile away from his friend's house. He walked  of the way there and then stopped to tie his shoe. How far did he travel before he stopped to tie his shoe?

Explanation:

A keyword in our question that gives us a clue that we are going to multiply to solve this problem is the word "of".  of the way to his friends house he stopped.

We know that his friend lives  of a mile away from him so we can set up our multiplication problem.

We can set up a tiled area model to help us solve the problem.

We use the denominators for the dimensions of our area model, and we use the numerators to fill parts of the area model.

We make the area model  by  because those are the denominators of our fractions. We shade up  and over , because those are the numerators of our fractions. Our answer is a fraction made up of the boxes that are shaded (the numerator) and the total tiles in the area model (the denominator).

### Example Question #2991 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

Brian lives  of a mile away from his friend's house. He walked  of the way there and then stopped to tie his shoe. How far did he travel before he stopped to tie his shoe?

Explanation:

A keyword in our question that gives us a clue that we are going to multiply to solve this problem is the word "of".  of the way to his friends house he stopped.

We know that his friend lives  of a mile away from him so we can set up our multiplication problem.

We can set up a tiled area model to help us solve the problem.

We use the denominators for the dimensions of our area model, and we use the numerators to fill parts of the area model.

We make the area model  by  because those are the denominators of our fractions. We shade up  and over , because those are the numerators of our fractions. Our answer is a fraction made up of the boxes that are shaded (the numerator) and the total tiles in the area model (the denominator).

### Example Question #41 : Interpret The Product (A/B) × Q As A Part Of A Partition Of Q Into B Equal Parts: Ccss.Math.Content.5.Nf.B.4a

Greg lives  of a mile away from his friend's house. He walked  of the way there and then stopped to tie his shoe. How far did he travel before he stopped to tie his shoe?

Explanation:

A keyword in our question that gives us a clue that we are going to multiply to solve this problem is the word "of".  of the way to his friends house he stopped.

We know that his friend lives  of a mile away from him so we can set up our multiplication problem.

We can set up a tiled area model to help us solve the problem.

We use the denominators for the dimensions of our area model, and we use the numerators to fill parts of the area model.

We make the area model  by  because those are the denominators of our fractions. We shade up  and over , because those are the numerators of our fractions. Our answer is a fraction made up of the boxes that are shaded (the numerator) and the total tiles in the area model (the denominator).

### Example Question #41 : Interpret The Product (A/B) × Q As A Part Of A Partition Of Q Into B Equal Parts: Ccss.Math.Content.5.Nf.B.4a

Dan lives  of a mile away from his friend's house. He walked  of the way there and then stopped to tie his shoe. How far did he travel before he stopped to tie his shoe?

Explanation:

A keyword in our question that gives us a clue that we are going to multiply to solve this problem is the word "of".  of the way to his friends house he stopped.

We know that his friend lives  of a mile away from him so we can set up our multiplication problem.

We can set up a tiled area model to help us solve the problem.

We use the denominators for the dimensions of our area model, and we use the numerators to fill parts of the area model.

We make the area model  by  because those are the denominators of our fractions. We shade up  and over , because those are the numerators of our fractions. Our answer is a fraction made up of the boxes that are shaded (the numerator) and the total tiles in the area model (the denominator).

### Example Question #81 : Operations With Fractions And Whole Numbers

Tim lives  of a mile away from his friend's house. He walked  of the way there and then stopped to pet a dog. How far did he travel before he stopped to pet the dog?