College Physics : Resistors

Study concepts, example questions & explanations for College Physics

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Circuits

You are given three resistors with known values:

You are asked to create a circuit with a total resistance of between  and . How should you arrange the resistors to accomplish this?

Possible Answers:

, , and  in parallel

 and  in parallel, connected to  in series

 and  in parallel;  is not necessary

, , and  in series

 and  in parallel, connected to  in series

Correct answer:

 and  in parallel, connected to  in series


This question requires no math to correctly answer! You should not need to 'brute force' it. Although it is designed to appear time consuming, it should be relatively easily once the principle of resistors in parallel is understood. Whenever two resistors are connected in parallel, the net resistance must be less than the resistance of either of the two alone. When resistors are connected in series, the net resistance must be more than the resistance of either alone.

Explanation of correct answer:

 and  in parallel, connected to  in series - It is possible to 'eyeball' this to see that this is at least feasible.  and  in parallel must make a network with an overall resistance less than . When added in series with  (), the overall may fall between  and . To confirm, one could do the math to calculate the overall resistance, but the point of this question is to use general principles to quickly eliminate the other, incorrect answer choices.

Explanations of incorrect answers:

, , and  in parallel - This combination cannot possibly work since the overall resistance must be less than  (the smallest resistor in parallel).

 and  in parallel, connected to  in series - Regardless of the overall resistance of  and  in parallel, the connection with  in series makes the total resistance more than .

 and  in parallel;  is not necessary - Placing  and  in parallel must result in a resistance less than .

, , and  in series - Connecting resistors in series results in an overall resistance greater than that of any one alone. Since  and  are included in series, the sum of the resistances is obviously much greater than what we are asked to produce and this choice can be immediately eliminated.

Learning Tools by Varsity Tutors