### All AP Calculus BC Resources

## Example Questions

### Example Question #60 : Ap Calculus Bc

Which of following intervals of convergence cannot exist?

**Possible Answers:**

For any , the interval for some

For any such that , the interval

**Correct answer:**

Explanation:

cannot be an interval of convergence because a theorem states that a radius has to be either nonzero and finite, or infinite (which would imply that it has interval of convergence ). Thus, can never be an interval of convergence.

### Example Question #61 : Polynomial Approximations And Series

Find the interval of convergence of for the series .

**Possible Answers:**

**Correct answer:**

Explanation:

Using the root test,

Because 0 is always less than 1, the root test shows that the series converges for any value of x.

Therefore, the interval of convergence is:

### Example Question #1 : Radius And Interval Of Convergence Of Power Series

Find the interval of convergence for of the Taylor Series .

**Possible Answers:**

**Correct answer:**

Explanation:

Using the root test

and

. T

herefore, the series only converges when it is equal to zero.

This occurs when x=5.

Benjamin

Certified Tutor

Certified Tutor

Southern Illinois University Carbondale, Bachelor of Science, Physics. Florida State University, Master of Science, Physics.

William

Certified Tutor

Certified Tutor

University of Chicago, Bachelor of Science, Mathematics. Massachusetts Institute of Technology, Doctor of Philosophy, Mathema...