# Algebra 1 : Equations / Solution Sets

## Example Questions

### Example Question #9 : How To Find The Solution For A System Of Equations

Solve for :

None of the other answers

Explanation:

First, combine like terms to get . Then, subtract 12 and from both sides to separate the integers from the 's to get . Finally, divide both sides by 3 to get .

### Example Question #10 : How To Find The Solution For A System Of Equations

We have two linear functions:

Find the coordinate at which they intersect.

none of these

Explanation:

We are given the following system of equations:

We are to find  and . We can solve this through the substitution method.  First, substitute the second equation into the first equation to get

Solve for  by adding 4x to both sides

Add 5 to both sides

Divide by 7

So . Use this value to find  using one of the equations from our given system of equations.  I think I'll use the first equation (can also use the second equation).

So the two linear functions intersect at

### Example Question #1 : Solve Problems Leading To Two Linear Equations: Ccss.Math.Content.8.Ee.C.8c

Teachers at an elementary school have devised a system where a student's good behavior earns him or her tokens. Examples of such behavior include sitting quietly in a seat and completing an assignment on time. Jim sits quietly in his seat 2 times and completes assignments 3 times, earning himself 27 tokens. Jessica sits quietly in her seat 9 times and completes 6 assignments, earning herself 69 tokens. How many tokens is each of these two behaviors worth?

Sitting quietly is worth 9 tokens and completing an assignment is worth 3.

Sitting quietly is worth 3 tokens and completing an assignment is worth 7.

Sitting quietly and completing an assignment are each worth 4 tokens.

Sitting quietly is worth 3 tokens and completing an assignment is worth 9.

Sitting quietly is worth 7 tokens and completing an assignment is worth 3.

Sitting quietly is worth 3 tokens and completing an assignment is worth 7.

Explanation:

Since this is a long word problem, it might be easy to confuse the two behaviors and come up with the wrong answer. Let's avoid this problem by turning each behavior into a variable. If we call "sitting quietly"  and "completing assignments" , then we can easily construct a simple system of equations,

and

.

We can multiply the first equation by  to yield .

This allows us to cancel the  terms when we add the two equations together. We get , or .

A quick substitution tells us that . So, sitting quietly is worth 3 tokens and completing an assignment on time is worth 7.

### Example Question #11 : How To Find The Solution For A System Of Equations

Solve for :

Explanation:

First, combine like terms to get .

Then, subtract 3 and  from both sides to get .

Then, divide both sides by 2 to get a solution of .

### Example Question #2413 : Algebra 1

Solve this system of equations:

Explanation:

To solve this system of equations, the elimination method can be used (the  terms cross out).

Once you eliminate the , you have .

Then isolate for , and you get .

Plug into the first equation to solve for .

### Example Question #2414 : Algebra 1

Solve the following system of equations:

This system has an infinite number of solutions.

This system has no solution.

This system has an infinite number of solutions.

Explanation:

Rearrange the second equation:

This is just a multiple of the first equation (by a factor of 3).  Therefore, the two equations are dependent on each are and are going to have an infinite number of solutions.

### Example Question #2415 : Algebra 1

Solve the set of equations:

Explanation:

Solve the first equation for :

Substitute into the second equation:

Multiply the entire equation by 2 to eliminate the fraction:

Using the value of , solve for :

Therefore, the solution is

### Example Question #2 : Systems Of Equations

Find the solution:

Explanation:

To solve this system of equations, we must first eliminate one of the variables. We will begin by eliminating the  variables by finding the least common multiple of the  variable's coefficients.  The least common multiple of 3 and 2 is 6, so we will multiply each equation in the system by the corresponding number, like

.

By using the distributive property, we will end up with

Now, add down each column so that you have

Then you solve for  and determine that .

But you're not done yet!  To find , you have to plug your answer for  back into one of the original equations:

Solve, and you will find that .

### Example Question #2416 : Algebra 1

Solve the following system of equations:

Explanation:

Set the two equations equal to one another:

2x - 2 = 3x + 6

Solve for x:

x = -8

Plug this value of x into either equation to solve for y.  We'll use the top equation, but either will work.

y = 2 * (-8) - 2

y = -18

### Example Question #2417 : Algebra 1

Solve the following system of equations:

Explanation:

Solve the second equation for y:

x - 2y = 4

-2y = 4 - x

y = -2 + x/2

Plug this into the first equation:

3x + 2(-2 + x/2) = 8

Solve for x:

3x - 4 + x = 8

4x = 12

x = 3

Plug this into the second equation to get a value for y:

3 - 2y = 4

2y = -1

y = -0.5