All ACT Reading Test Resources
Example Questions
Example Question #6 : Finding Evidence
Which of the following provides the best evidence for the claim below?
A finding that non-word regions continue to solidify in students who remain illiterate may call into question the claim that learning to read does not affect parts of the brain other than the VWFA.
Sentence 3 ("However, brain ... read")
Sentence 4 ("The rapid ... cortex")
Sentence 1 ("Even at ... activation")
Sentence 2 ("In contrast ... skills")
The following passage and corresponding figure are from Emilie Reas. "How the brain learns to read: development of the “word form area”, PLOS Neuro Community, 2018.
The ability to recognize, process, and interpret written language is a uniquely human skill that is acquired with remarkable ease at a young age. But as anyone who has attempted to learn a new language will attest, the brain isn’t “hardwired” to understand written language. In fact, it remains somewhat of a mystery how the brain develops this specialized ability. Although researchers have identified brain regions that process written words, how this selectivity for language develops isn’t entirely clear.
Earlier studies have shown that the ventral visual cortex supports recognition of an array of visual stimuli, including objects, faces, and places. Within this area, a subregion in the left hemisphere known as the “visual word form area” (VWFA) shows a particular selectivity for written words. However, this region is characteristically plastic. It’s been proposed that stimuli compete for representation in this malleable area, such that “winner takes all” depending on the strongest input. That is, how a site is ultimately mapped is dependent on what it’s used for in early childhood. But this idea has yet to be confirmed, and the evolution of specialized brain areas for reading in children is still poorly understood.
In their study, Dehaene-Lambertz and colleagues monitored the reading abilities and brain changes of ten six-year-old children to track the emergence of word specialization during a critical development period. Over the course of their first school-year, children were assessed every two months with reading evaluations and functional MRI while viewing words and non-word images (houses, objects, faces, bodies). As expected, reading ability improved over the year of first grade, as demonstrated by increased reading speed, word span, and phoneme knowledge, among other measures.
[Sentence 1] Even at this young age, when reading ability was newly acquired, words evoked widespread left-lateralized brain activation. This activity increased over the year of school, with the greatest boost occurring after just the first few months. Importantly, there were no similar activation increases in response to other stimuli, confirming that these adaptations were specific to reading ability, not a general effect of development or education. Immediately after school began, the brain volume specialized for reading also significantly increased. Furthermore, reading speed was associated with greater activity, particularly in the VWFA. The researchers found that activation patterns to words became more reliable with learning.[Sentence 2] In contrast, the patterns for other categories remained stable, with the exception of numbers, which may reflect specialization for symbols (words and numbers) generally, or correlation with the simultaneous development of mathematics skills.
What predisposes one brain region over another to take on this specialized role for reading words? Before school, there was no strong preference for any other category in regions that would later become word-responsive. [Sentence 3] However, brain areas that were destined to remain “non-word” regions showed more stable responses to non-word stimuli even before learning to read. Thus, perhaps the brain takes advantage of unoccupied real-estate to perform the newly acquired skill of reading.
These findings add a critical piece to the puzzle of how reading skills are acquired in the developing child brain. Though it was already known that reading recruits a specialized brain region for words, this study reveals that this occurs without changing the organization of areas already specialized for other functions. The authors propose an elegant model for the developmental brain changes underlying reading skill acquisition. In the illiterate child, there are adjacent columns or patches of cortex either tuned to a specific category, or not yet assigned a function. With literacy, the free subregions become tuned to words, while the previously specialized subregions remain stable.
[Sentence 4] The rapid emergence of the word area after just a brief learning period highlights the remarkable plasticity of the developing cortex. In individuals who become literate as adults, the same VWFA is present. However, in contrast to children, the relation between reading speed and activation in this area is weaker in adults, and a single adult case-study by the authors showed a much slower, gradual development of the VWFA over a prolonged learning period of several months. Whatever the reason, this region appears primed to rapidly adopt novel representations of symbolic words, and this priming may peak at a specific period in childhood. This finding underscores the importance of a strong education in youth. The authors surmise that “the success of education might also rely on the right timing to benefit from the highest neural plasticity. Our results might also explain why numerous academic curricula, even in ancient civilizations, propose to teach reading around seven years.”
The figure below shows different skills mapped to different sites in the brain before schooling and then with and without school. Labile sites refer to sites that are not currently mapped to a particular skill.
Sentence 2 ("In contrast ... skills")
When you're asked to find evidence for inference or claim, follow the directions in each answer choice to return to the passage and consider each proposed sentence to see which fits the claim. Here, sentence 2 states that learning to read also aids in the development of number recognition. This implies that something to do with learning to read affects an area of the brain not specific to reading itself - a finding that is seemingly at odds with the information presented in the rest of the passage, so this is the correct answer.
Example Question #2 : Finding Evidence
Which choice provides the best evidence to support the statement below?
The author of this passage argues that the effect of social media may give the illusion that feedback on a study is more negative than it really is.
Sentence 4 ("For example ... reality")
Sentence 3 ("Whether these ... scientist")
Sentence 1 ("Adding to ... research")
Sentence 2 ("To some ... scientists")
This passage is adapted from Adam K. Fetterman and Kai Sassenberg, “The Reputational Consequences of Failed Replications and Wrongness Admission among Scientists", first published in December 2015 by PLOS ONE.
We like to think of science as a purely rational. However, scientists are human and often identify with their work. Therefore, it should not be controversial to suggest that emotions are involved in replication discussions.[Sentence 1] Adding to this inherently emotionally volatile situation, the recent increase in the use of social media and blogs by scientists has allowed for instantaneous, unfiltered, and at times emotion-based commentary on research. Certainly, social media has the potential to lead to many positive outcomes in science–among others, to create a more open science.[Sentence 2] To some, however, it seems as if this ease of communication is also leading to the public tar and feathering of scientists. [Sentence 3] Whether these assertions are true is up for debate, but we assume they are a part of many scientists’ subjective reality. Indeed, when failed replications are discussed in the same paragraphs as questionable research practices, or even fraud, it is hard to separate the science from the scientist. Questionable research practices and fraud are not about the science; they are about the scientist. We believe that these considerations are at least part of the reason that we find the overestimation effect that we do, here.
Even so, the current data suggest that while many are worried about how a failed replication would affect their reputation, it is probably not as bad as they think. Of course, the current data cannot provide evidence that there are no negative effects; just that the negative impact is overestimated. That said, everyone wants to be seen as competent and honest, but failed replications are a part of science. In fact, they are how science moves forward!
While we imply that these effects may be exacerbated by social media, the data cannot directly speak to this. However, anyone of a number of cognitive biases may add support to this assumption and explain our findings.[Sentence 4] For example, it may be that a type of availability bias or pluralistic ignorance of which the more vocal and critical voices are leading individuals to judge current opinions as more negative than reality. As a result, it is easy to conflate discussions about direct replications with “witch- hunts” and overestimate the impact on one’s own reputation. Whatever the source may be, it is worth looking at the potential negative impact of social media in scientific conversations.
If the desire is to move science forward, scientists need to be able to acknowledge when they are wrong. Theories come and go, and scientists learn from their mistakes (if they can even be called “mistakes”). This is the point of science. However, holding on to faulty ideas flies in the face of the scientific method. Even so, it often seems as if scientists have a hard time admitting wrongness. This seems doubly true when someone else fails to replicate a scientist’s findings. Even so, it often seems as if scientists have a hard time admitting wrongness. This seems doubly true when someone else fails to replicate a scientist’s findings. In some cases, this may be the proper response. Just as often, though, it is not. In most cases, admitting wrongness will have relatively fewer ill effects on one’s reputation than not admitting and it may be better for reputation. It could also be that wrongness admission repairs damage to reputation.
It may seem strange that others consider it less likely that questionable research practices, for example, were used when a scientist admits that they were wrong. However, it does make sense from the standpoint that wrongness admission seems to indicate honesty. Therefore, if one is honest in one domain, they are likely honest in other domains. Moreover, the refusal to admit might indicate to others that the original scientist is trying to cover something up. The lack of significance of most of the interactions in our study suggests that it even seems as if scientists might already realize this. Therefore, we can generally suggest that scientists admit they are wrong, but only when the evidence suggests they should.
The chart below maps how scientists view others' work (left) and how they suspect others will view their own work (right) if the researcher (the scientist or another, depending on the focus) admitted to engaging in questionable research practices.
Adapted from Fetterman & Sassenberg, "The Reputational Consequences of Failed Replications and Wrongness Admission among Scientists." December 9, 2015, PLOS One.
Sentence 4 ("For example ... reality")
To answer this "find the evidence" question, you need to know where to look back. Luckily the SAT has made this easy for you by giving you four options. Unless you remember exactly where to look back from your initial reading, your strategy here should be to use the answer choices to help you answer the question. When you look back at those sentences highlighted in the passage, Sentence 4 is in the middle of paragraph 3, which does discuss the negative effects social media can have on feedback of a study- making it appear more negative. Thus, sentence 4 is the correct answer.
Example Question #7 : Finding Evidence
The author of this passage would most likely believe that a researcher does not admit that the findings of a study cannot be replicated because they fear that their other work will be less trusted.
Sentence 2 ("As a result ... reputation")
Sentence 1 ("Indeed ... scientist")
Sentence 4 ("In most ... reputation")
Sentence 3 ("Even so ... findings")
This passage is adapted from Adam K. Fetterman and Kai Sassenberg, “The Reputational Consequences of Failed Replications and Wrongness Admission among Scientists", first published in December 2015 by PLOS ONE.
We like to think of science as a purely rational. However, scientists are human and often identify with their work. Therefore, it should not be controversial to suggest that emotions are involved in replication discussions. Adding to this inherently emotionally volatile situation, the recent increase in the use of social media and blogs by scientists has allowed for instantaneous, unfiltered, and at times emotion-based commentary on research. Certainly, social media has the potential to lead to many positive outcomes in science–among others, to create a more open science. To some, however, it seems as if this ease of communication is also leading to the public tar and feathering of scientists. Whether these assertions are true is up for debate, but we assume they are a part of many scientists’ subjective reality.[Sentence 1] Indeed, when failed replications are discussed in the same paragraphs as questionable research practices, or even fraud, it is hard to separate the science from the scientist. Questionable research practices and fraud are not about the science; they are about the scientist. We believe that these considerations are at least part of the reason that we find the overestimation effect that we do, here.
Even so, the current data suggest that while many are worried about how a failed replication would affect their reputation, it is probably not as bad as they think. Of course, the current data cannot provide evidence that there are no negative effects; just that the negative impact is overestimated. That said, everyone wants to be seen as competent and honest, but failed replications are a part of science. In fact, they are how science moves forward!
While we imply that these effects may be exacerbated by social media, the data cannot directly speak to this. However, anyone of a number of cognitive biases may add support to this assumption and explain our findings. For example, it may be that a type of availability bias or pluralistic ignorance of which the more vocal and critical voices are leading individuals to judge current opinions as more negative than reality.[Sentence 2] As a result, it is easy to conflate discussions about direct replications with “witch- hunts” and overestimate the impact on one’s own reputation. Whatever the source may be, it is worth looking at the potential negative impact of social media in scientific conversations.
If the desire is to move science forward, scientists need to be able to acknowledge when they are wrong. Theories come and go, and scientists learn from their mistakes (if they can even be called “mistakes”). This is the point of science. However, holding on to faulty ideas flies in the face of the scientific method. [Sentence 3] Even so, it often seems as if scientists have a hard time admitting wrongness. This seems doubly true when someone else fails to replicate a scientist’s findings. In some cases, this may be the proper response. Just as often, though, it is not. [Sentence 4] In most cases, admitting wrongness will have relatively fewer ill effects on one’s reputation than not admitting and it may be better for reputation. It could also be that wrongness admission repairs damage to reputation.
It may seem strange that others consider it less likely that questionable research practices, for example, were used when a scientist admits that they were wrong. However, it does make sense from the standpoint that wrongness admission seems to indicate honesty. Therefore, if one is honest in one domain, they are likely honest in other domains. Moreover, the refusal to admit might indicate to others that the original scientist is trying to cover something up. The lack of significance of most of the interactions in our study suggests that it even seems as if scientists might already realize this. Therefore, we can generally suggest that scientists admit they are wrong, but only when the evidence suggests they should.
The chart below maps how scientists view others' work (left) and how they suspect others will view their own work (right) if the researcher (the scientist or another, depending on the focus) admitted to engaging in questionable research practices.
Adapted from Fetterman & Sassenberg, "The Reputational Consequences of Failed Replications and Wrongness Admission among Scientists." December 9, 2015, PLOS One.
Sentence 3 ("Even so ... findings")
To find evidence for a conclusion, you must go back to the passage. Fortunately, these questions generally include markers in the answer choices to direct you to a specific sentence; unless you remember exactly where to look back from your initial reading, your strategy here should be to use the answer choices to help you answer the question. When you look back at those sentences highlighted in the passage, Sentence 3 is in the middle of paragraph 4, which does discuss scientists having a hard time admitting when their research is wrong, especially when it can't be replicated. Thus, sentence 3 is the correct answer.
Example Question #8 : Finding Evidence
Which of the following choices provides the best support for the statement below?
Under some circumstances, gene inversion can lead to reproductive isolation.
Sentence 4 ("If eventually ... horses")
Sentence 1 ("Horses and ... each other")
Sentence 2 ("Most of ... cell division")
Sentence 3 ("The bigger ... exchange parts")
The following passage is adapted from Ricki Lewis, "Did Donkeys Arise from an Inverted Chromosome?", originally published 2018 in PLOSOne Blogs.
In the world of genome sequencing, donkeys haven’t received nearly as much attention as horses. But now a report on a new-and-improved genome sequence of Willy, a donkey (Equus asinus) jack 5 born at the Copenhagen Zoo in 1997, appears in the new issue of Science Advances, from Gabriel Renaud, of the Centre for GeoGenetics, Natural History Museum of Denmark. (A female is a jenny or jennet.) The new view provides clues to how donkeys may have branched from horses along the tree of evolution.
[Sentence 1] Horses and their relatives, past and present, are genetically peculiar in that their chromosomes are rearranged, with respect to each other. That should prevent them from producing viable hybrids – yet they do. Donkeys have 62 chromosomes and horses have 64. A mule comes from the mating of a male donkey and a female horse, and has 63 chromosomes. Mules are known for their intelligence, calm, stamina, and persistence. Their horse-like bodies perched on donkey-like limbs make them ideal for hauling tourists around the Grand Canyon and schlepping supplies in combat situations. The ears are large like those of the horse mom, and mules make a sound that begins as a whinny and becomes a bray.
The complementary couple, a female donkey and a male horse, produces a hinny, smaller than a mule. Hinnies are the flip side of the mule, with a donkey’s physique atop horsey limbs, and short donkey ears. They’re rarer than mules, but also have 63 chromosomes. It’s easy to mix them up.
Comparing Willy’s genome to a horse genome revealed their close evolutionary relationship. Only about 15% of horse genes aren’t also in the donkey genome, and only about 10% of a donkey’s genes don’t have counterparts in the horse. [Sentence 2] Most of the genes that they share to provide basic “housekeeping” functions like dismantling proteins, repairing DNA, enabling embryonic development, and controlling cell division. So that’s why a copy of each genome can smush together to yield mules and hinnies.
The second form of information encoded in genomes, in addition to the A, C, T, G sequence, is the pattern of whether the two variants of individual genes are different (heterozygous) or the same (homozygous). Many contiguous homozygous genes form a “run of homozygosity” (ROH).
An ROH indicates a chromosome chunk, perhaps as long as millions of DNA bases, that’s the same from each of an individual’s parents, who in turn inherited it from a shared ancestor, like a grandparent that cousins share. The longer the ROH, the more recent the shared ancestor, because it takes time for mutations to accrue that would break the sameness of the sequence.
Scrutinizing ROHs can reveal recent inbreeding and domestication, help to reconstruct possible branching patterns of evolution, and, more practically, help ancestry companies assign the DNA in spit samples to geographic areas where people’s ancestors might have come from. The new study compared ROHs for the three zebra and three ass species, confirming that Willy’s most recent ancestors were Somali wild asses.
The researchers used the Chicago HiRise assembly technology to up the quality of Willy’s genome sequence. “This new assembly allowed us to identify fine chromosomal rearrangements between the horse and the donkey that likely played an active role in their divergence and, ultimately, speciation,” they write.
[Sentence 3] The bigger pieces enabled them to zero in on DNA sequences where chromosomes contort, such as inversions (where a sequence flips) or translocations (where different chromosome types exchange parts). These events could have fueled the reproductive isolation of small populations that can expand into speciation.
[Sentence 4] If eventually sperm with one inverted chromosome fertilized eggs with the same inversion, animals would have been conceived in which both copies of the chromosome are inverted – and they’d be fertile with each other, but not with horses. Once a subpopulation with the inversion became established, further genetic changes would separate them further from the ancestral horse.
Sentence 4 ("If eventually ... horses")
Whenever a question asks you to find evidence for an inference, a good course of action is to let the answer choices guide you to the relevant portions of the passage and then to use the process of elimination. You can then hold each potential sentence up against the inference to see which directly supports your inference.
The quotation in "Sentence 4 ("If eventually ... horses")" states that if an egg and a sperm with the same inversion are combined, the children of that pairing would be fertile with each other but not with horses. In other words, under that particular circumstance, gene inversion could lead to reproductive isolation. This is the correct answer.
The quotation in Sentence 1 ("Horses and ... each other") states that horses have translocations in their genes compared to donkeys. This does not support the statement.
The quotation in Sentence 2 ("Most of ... cell division") states that horses and donkeys have a few key genes in common that allow them to reproduce. While this does mean that they are genetically similar, this quotation cannot be linked to the statement.
The quotation in Sentence 3 ("The bigger ... exchange parts") states that scientists were able to look at gene inversions. This does not match the statement.
Example Question #9 : Finding Evidence
Which choice provides the best evidence for the inference below?
“Women did not enjoy the same degree of liberty as men.”
Sentence 1 (“And it is…the ballot”)
Sentence 3 (“An oligarchy …endured”)
Sentence 4 ("Webster...hold office")
Sentence 2 (“For any state…the land”)
The following passage is adapted from a speech delivered by Susan B. Anthony in 1873. The speech was delivered after Anthony was tried and fined $100 for voting in the 1872 presidential election.
Friends and fellow citizens: I stand before you tonight under indictment for the alleged crime of having voted at the last Presidential election, without having a lawful right to vote. It shall be my work this evening to prove to you that in thus voting, I not only committed no crime, but, instead, simply exercised my citizen’s rights, guaranteed to me and all United States citizens by the National Constitution, beyond the power of any State to deny.
The preamble of the Federal Constitution says: “We, the people of the United States, in order to form a more perfect union, establish justice, insure domestic tranquillity, provide for the common defense, promote the general welfare, and secure the blessings of liberty to ourselves and our posterity, do ordain and establish this Constitution for the United States of America.”
It was we, the people; not we, the white male citizens; nor yet we, the male citizens; but we, the whole people, who formed the Union. And we formed it, not to give the blessings of liberty, but to secure them; not to the half of ourselves and the half of our posterity, but to the whole people— women as well as men. (Sentence 1) And it is a downright mockery to talk to women of their enjoyment of the blessings of liberty while they are denied the use of the only means of securing them provided by this democratic-republican government—the ballot.
(Sentence 2) For any State to make sex a qualification that must ever result in the disfranchisement of one entire half of the people is a violation of the supreme law of the land. By it the blessings of liberty are forever withheld from women and their female posterity. To them this government had no just powers derived from the consent of the governed. To them this government is not a democracy. It is not a republic. It is an odious aristocracy; a hateful oligarchy of sex; the most hateful aristocracy ever established on the face of the globe; an oligarchy of wealth, where the right govern the poor. (Sentence 3) An oligarchy of learning, where the educated govern the ignorant, or even an oligarchy of race, where the Saxon rules the African, might be endured, but this oligarchy of sex, which makes father, brothers, husband, sons, the oligarchs over the mother and sisters, the wife and daughters of every household—which ordains all men sovereigns, all women subjects, carries dissension, discord and rebellion into every home of the nation.
(Sentence 4) Webster, Worcester and Bouvier all define a citizen to be a person in the United States, entitled to vote and hold office. The one question left to be settled now is: Are women persons? And I hardly believe any of our opponents will have the hardihood to say they are not. Being persons, then, women are citizens; and no State has a right to make any law, or to enforce any old law, that shall abridge their privileges or immunities. Hence, every discrimination against women are citizenswomen in the constitutions and laws of the several States is today null and void, precisely as is every one against African Americans.
Sentence 1 (“And it is…the ballot”)
In this example, we’re looking for an answer that can directly support the inference that “women did not enjoy the same degree of liberty as men.” So, we need an excerpt that gives us reason to believe that women did not have the same rights/freedoms as men. The first sentence of our options directly addresses this, as it reads “And it is a downright mockery to talk to women of their enjoyment of the blessings of liberty while they are denied the use of the only means of securing them provided by this democratic-republican government—the ballot.” In this excerpt, Anthony suggests that women could not possibly have the same level of freedom when they do not have the same rights, and specifically, the ability to exercise their opinions and interests via “the ballot,” or voting. None of our remaining options, on their own, draw the direct comparison between the rights of women and those of men.
All ACT Reading Test Resources
