# ACT Math : How to use FOIL with the distributive property

## Example Questions

### Example Question #41 : How To Use Foil With The Distributive Property

Explanation:

Use the distributive property to FOIL.

### Example Question #42 : How To Use Foil With The Distributive Property

Explanation:

FOIL using the distributive property.

### Example Question #43 : How To Use Foil With The Distributive Property

Explanation:

Use the distributive property to FOIL.

Simplify.

### Example Question #44 : How To Use Foil With The Distributive Property

Use FOIL to expand

Explanation:

To FOIL, simply multiply each term by each term in the other parenthesis. Thus,

### Example Question #45 : How To Use Foil With The Distributive Property

FOIL the following:

Explanation:

To FOIL, remember the acronym. F-first, O-outside, I-inside, L-last.

Thus, perform the following multiplication.

Firsts:

Outside:

Inside:

Lasts:

Gathering like terms results in the final equation.

### Example Question #1141 : Algebra

What is ?

Explanation:

The simple formula for difference of two squares is:

.

To see this, you can also FOIL out

Multiplying the first terms, outer terms, inner terms, and last terms results in the following.

Gathering like terms the x's cancel out.

### Example Question #1142 : Algebra

What is ?

Explanation:

Diffference of two squares formula,

Note that , negative cancels out.

You can also FOIL:

Multiplying the first terms, outer terms, inner terms, and last terms results in the following.

### Example Question #41 : How To Use Foil With The Distributive Property

Multiply the complex numbers:

.

Explanation:

Expanding out gives .

We know that  so when we substitute that in we get .

### Example Question #41 : Foil

Solve for .

Explanation:

To solve this equation, first distribute on the right side of the equation.

Then, subtract  from both sides.

Then divide both sides by .

Another method for solving this problem is to plug in the answer choices and solve.