# ACT Math : How to use FOIL with exponents

## Example Questions

2 Next →

### Example Question #81 : Exponents

Distribute and simplify:

Explanation:

To FOIL this binomial distribution, we simply distribute the terms in a specific order:

Multiply the First terms:

Multiply the Outer terms:

Multiply the Inner terms:

Multiply the Last terms:

Lastly, combine any terms that allow this (usually, but not always, the two middle terms). In this case, no two terms are compatible.

### Example Question #82 : Exponents

Distribute and simplify:

Explanation:

To FOIL this binomial distribution, we simply distribute the terms in a specific order:

Multiply the First terms:

Multiply the Outer terms:

Multiply the Inner terms:

Multiply the Last terms:

Lastly, combine any terms that allow this (usually, but not always, the two middle terms).

### Example Question #83 : Exponents

Distribute and simplify:

Explanation:

To FOIL this binomial distribution, we simply distribute the terms in a specific order:

Multiply the First terms:

Multiply the Outer terms:

Multiply the Inner terms:

Multiply the Last terms:

Lastly, combine any terms that allow this (usually, but not always, the two middle terms).

### Example Question #84 : Exponents

Distribute and simplify:

Explanation:

A clever eye might spot that this binomial takes the form , which means you can jump straight to  as the answer. But let's look at it in detail below.

To FOIL this binomial distribution, we simply distribute the terms in a specific order:

Multiply the First terms:

Multiply the Outer terms:

Multiply the Inner terms:

Multiply the Last terms:

Lastly, combine any terms that allow this (usually, but not always, the two middle terms).

### Example Question #85 : Exponents

Distribute and simplify:

Explanation:

To FOIL this binomial distribution, we simply distribute the terms in a specific order:

Multiply the First terms:

Multiply the Outer terms:

Multiply the Inner terms:

Multiply the Last terms:

Lastly, combine any terms that allow this (usually, but not always, the two middle terms). In this case, no two terms are compatible.