SAT Math : How to find the solution to an inequality with multiplication

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1924 : Sat Mathematics

If –1 < n < 1, all of the following could be true EXCEPT:

Possible Answers:

16n2 - 1 = 0

n2 < n

|n2 - 1| > 1

(n-1)2 > n

n2 < 2n

Correct answer:

|n2 - 1| > 1

Explanation:

N_part_1

N_part_2

N_part_3

N_part_4

N_part_5

Example Question #3 : How To Find The Solution To An Inequality With Multiplication

(√(8) / -x ) <  2. Which of the following values could be x?

Possible Answers:

-2

-1

-3

-4

All of the answers choices are valid.

Correct answer:

-1

Explanation:

The equation simplifies to x > -1.41. -1 is the answer.

Example Question #1 : How To Find The Solution To An Inequality With Multiplication

Solve for x

\small 3x+7 \geq -2x+4

 

Possible Answers:

\small x \geq \frac{3}{5}

\small x \geq -\frac{3}{5}

\small x \leq -\frac{3}{5}

\small x \leq \frac{3}{5}

Correct answer:

\small x \geq -\frac{3}{5}

Explanation:

\small 3x+7 \geq -2x+4

\small 3x \geq -2x-3

\small 5x \geq -3

\small x\geq -\frac{3}{5}

Example Question #5 : How To Find The Solution To An Inequality With Multiplication

We have , find the solution set for this inequality. 

Possible Answers:

Correct answer:

Explanation:

Example Question #6 : How To Find The Solution To An Inequality With Multiplication

Fill in the circle with either <, >, or = symbols:

(x-3)\circ\frac{x^2-9}{x+3} for x\geq 3.

 

Possible Answers:

(x-3)=\frac{x^2-9}{x+3}

(x-3)> \frac{x^2-9}{x+3}

None of the other answers are correct.

(x-3)< \frac{x^2-9}{x+3}

The rational expression is undefined.

Correct answer:

(x-3)=\frac{x^2-9}{x+3}

Explanation:

(x-3)\circ\frac{x^2-9}{x+3}

Let us simplify the second expression. We know that:

(x^2-9)=(x+3)(x-3)

So we can cancel out as follows:

\frac{x^2-9}{x+3}=\frac{(x+3)(x-3)}{(x+3)}=x-3

(x-3)=\frac{x^2-9}{x+3}

 

Example Question #11 : Understanding Fractions

What value must  take in order for the following expression to be greater than zero?

Possible Answers:

Correct answer:

Explanation:

 is such that:

Add  to each side of the inequality:

Multiply each side of the inequality by :

Multiply each side of the inequality by :

Divide each side of the inequality by :

You can now change the fraction on the right side of the inequality to decimal form.

The correct answer is , since k has to be less than  for the expression to be greater than zero.

Example Question #1 : How To Find The Solution To An Inequality With Multiplication

Give the solution set of this inequality:

Possible Answers:

The set of all real numbers

Correct answer:

Explanation:

The absolute value inequality

 

can be rewritten as the compound inequality

 or 

Solve each inequality separately, using the properties of inequality to isolate the variable on the left side:

Subtract 17 from both sides:

Divide both sides by , switching the inequality symbol since you are dividing by a negative number:

,

which in interval notation is 

The same steps are performed with the other inequality:

which in interval notation is .

The correct response is the union of these two sets, which is 

.

Example Question #2 : How To Find The Solution To An Inequality With Multiplication

Find the maximum value of , from the system of inequalities.

 

Possible Answers:

Correct answer:

Explanation:

First step is to rewrite 

Next step is to find the vertices of the bounded region. We do this by plugging in the x bounds into the  equation. Don't forgot to set up the other x and y bounds, which are given pretty much.

The vertices are

 

Now we plug each coordinate into , and what the maximum value is.

 

So the maximum value is 

Learning Tools by Varsity Tutors

Incompatible Browser

Please upgrade or download one of the following browsers to use Instant Tutoring: