High School Biology : Understanding the Citric Acid Cycle

Study concepts, example questions & explanations for High School Biology

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Understanding The Citric Acid Cycle

What are the products of the citric acid cycle?

Possible Answers:

Correct answer:

Explanation:

The citric acid cycle is the process by which acetyl-CoA (a two-carbon molecule) is completely broken down to carbon dioxide and energy. Acetyl-CoA loses its CoA and is attached to oxaloacetate (OAA) to produce citrate, which is converted to isocitrate. From there the following occurs:

  • Isocitrate (6C) is converted to -ketoglutarate (5C), 1 CO2, and 1 NADH
  • -ketoglutarate (5C) is converted to succinyl-CoA (4C), 1 CO2, and 1 NADH
  • Succinyl-CoA (4C) is converted to succinate (4C) and 1 GTP (similar to ATP)
  • Succinate (4C) is converted to fumarate (4C) and 1 FADH2
  • Fumarate (4C) is converted to malate (4C)
  • Malate (4C) is converted to OAA (4C) and 1 NADH

The net result is 3 NADH, 2 CO2, 1 FADH2, and 1 GTP (similar to ATP) per round. Since one glucose molecule produces two pyruvate molecules, which produce two Acetyl-CoA, the cycle occurs twice per glucose molecule.

Example Question #2 : Understanding The Citric Acid Cycle

Which step(s) of respiration can only be completed under aerobic conditions in eukaryotes?

Possible Answers:

Glycolysis and Krebs cycle

Electron transport chain only

Krebs cycle only

Krebs cycle and electron transport chain

Correct answer:

Krebs cycle and electron transport chain

Explanation:

Glycolysis is the first step in extracting energy from a sugar molecule. It converts a 6-carbon sugar molecule, such as glucose, into two three-carbon pyruvate molecules. It does not require oxygen, and is the first step in both aerobic and anaerobic respiration. Glycolysis produces two net ATP per sugar molecule.

If oxygen is present, the pyruvate molecules are broken down into acetyl-CoA and translocated into the mitochondria, where they undergo the Krebs cycle in the mitochondrial matrix. The Krebs cycle products NADH and FADH2, which are used to make ATP in the electron transport chain, which uses oxygen and hydrogen ions to create water. The electron transport chain creates an additional 34 ATP per original sugar molecule.

If oxygen is not present, pyruvate from glycolysis can be converted to lactic acid through fermentation, which regenerates the NAD+ required for more glycolysis cycles. The Krebs cycle and electron transport chain cannot function in anaerobic conditions (no oxygen).

Example Question #3 : Understanding The Citric Acid Cycle

What is the name of the two-carbon molecule that enters the citric acid cycle?

Possible Answers:

Oxaloacetate

Acetyl CoA

Citrate

Pyruvate

Correct answer:

Acetyl CoA

Explanation:

Prior to entering the citric acid cycle, pyruvate (a three-carbon molecule) is processed and converted into acetyl CoA (a two-carbon molecule).

This will then enter the citric acid cycle and combine with oxaloacetate (a four-carbon molecule) in order to make citrate, a six-carbon molecule.

Example Question #1 : Understanding The Citric Acid Cycle

Do plants undergo the process of cellular respiration?

Possible Answers:

Yes, but only at night.

No, not at all.

Yes, they do.

Yes, but only when there is a light source.

Some plants do, but only when being eaten by herbivores.

Correct answer:

Yes, they do.

Explanation:

All organisms, including plants, undergo cellular respiration. Some students get confused when discussing both cellular respiration and photosynthesis because they assume that plants photosynthesize and animals respire. One way to remember that all organisms respire is to understand what the two processes do. Photosynthesis is the process that creates glucose which is a form of energy storage. Cellular respiration is the process that breaks down glucose piece by piece into small packets of energy called ATP which is the usable form of energy in cells. When thinking about both processes, it becomes apparent why all organisms must undergo cellular respiration in order to convert stored energy to usable energy.

Example Question #5 : Understanding The Citric Acid Cycle

Which of the following is not a net product of the Krebs cycle?

Possible Answers:

Correct answer:

Explanation:

After 2 rounds of the Krebs cycle per glucose are completed, , and  are produced. Water is produced during one step in the Krebs cycle, but it is consumed during three steps. Thus, water is a reactant, not a product of the Krebs cycle.

Example Question #6 : Understanding The Citric Acid Cycle

Where in the cell does the citric acid cycle take place?

Possible Answers:

Ribosome

Cytoplasm

Matrix of the mitochondria

Mitochondrial inner membrane

Cell membrane

Correct answer:

Matrix of the mitochondria

Explanation:

Although the citric acid cycle does synthesize two ATP per round, its main purpose is to produce NADH for the electron transport chain that makes ATP much more efficiently. Since the electron transport chain is located in the inner mitochondrial membrane, it is most efficient for the cell to produce the NADH in the mitochondrial matrix where it can be used immediately for its purpose, rather than having to use time and resources to transport it there.

Learning Tools by Varsity Tutors

Incompatible Browser

Please upgrade or download one of the following browsers to use Instant Tutoring: