GRE Math : How to find the common factor of square roots

Study concepts, example questions & explanations for GRE Math

varsity tutors app store varsity tutors android store varsity tutors amazon store varsity tutors ibooks store

Example Questions

Example Question #1 : How To Find The Common Factor Of Square Roots

Which of the following is equivalent to:

?

Possible Answers:

Correct answer:

Explanation:

To begin with, factor out the contents of the radicals.  This will make answering much easier:

They both have a common factor .  This means that you could rewrite your equation like this:

This is the same as:

These have a common .  Therefore, factor that out:

Example Question #2 : Basic Squaring / Square Roots

Simplify:

Possible Answers:

Correct answer:

Explanation:

These three roots all have a  in common; therefore, you can rewrite them:

Now, this could be rewritten:

Now, note that 

Therefore, you can simplify again:

Now, that looks messy! Still, if you look carefully, you see that all of your factors have ; therefore, factor that out:

This is the same as:

Example Question #1 : How To Find The Common Factor Of Square Roots

Simplify the following:

Possible Answers:

It cannot be simplified any further

Correct answer:

Explanation:

Begin by factoring each of the roots to see what can be taken out of each:

These can be rewritten as:

Notice that each of these has a common factor of .  Thus, we know that we can rewrite it as:

Example Question #2 : How To Find The Common Factor Of Square Roots

Simplify the following:

Possible Answers:

The expression cannot be simplified any further.

Correct answer:

Explanation:

Clearly, all three of these roots have a common factor  inside of their radicals. We can start here with our simplification. Therefore, rewrite the radicals like this:

We can simplify this a bit further:

From this, we can factor out the common :

Example Question #3 : How To Find The Common Factor Of Square Roots

Possible Answers:

Correct answer:

Explanation:

To attempt this problem, attempt to simplify the roots of the numerator and denominator:

Notice how both numerator and denominator have a perfect square:

The  term can be eliminated from the numerator and denominator, leaving

Example Question #4 : How To Find The Common Factor Of Square Roots

Possible Answers:

Correct answer:

Explanation:

For this problem, begin by simplifying the roots. As it stands, numerator and denominator have a common factor of  in the radical:

And as it stands, this  is multiplied by a perfect square in the numerator and denominator:

The  term can be eliminated from the top and bottom, leaving

Example Question #5 : How To Find The Common Factor Of Square Roots

Possible Answers:

Correct answer:

Explanation:

To solve this problem, try simplifying the roots by factoring terms; it may be noticeable from observation that both numerator and denominator have a factor of  in the radical:

We can see that the denominator has a perfect square; now try factoring the  in the numerator:

We can see that there's a perfect square in the numerator:

Since there is a  in the radical in both the numerator and denominator, we can eliminate it, leaving

Learning Tools by Varsity Tutors

Incompatible Browser

Please upgrade or download one of the following browsers to use Instant Tutoring: