Common Core: High School - Number and Quantity : Vector Multiplication (Matrices being Transformations of Vectors): CCSS.Math.Content.HSN-VM.C.11

Study concepts, example questions & explanations for Common Core: High School - Number and Quantity

varsity tutors app store varsity tutors android store

All Common Core: High School - Number and Quantity Resources

6 Diagnostic Tests 49 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

← Previous 1

Example Question #1 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Possible Answers:

Not possible

Correct answer:

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

 

 

Now we apply the above to get the following solution.

 

Example Question #2 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Possible Answers:

Correct answer:

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

 

 

Now we apply the above to get the following solution.

 

Example Question #3 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Possible Answers:

Correct answer:

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

 

 

Now we apply the above to get the following solution.

 

Example Question #4 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Possible Answers:

Correct answer:

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

 

 

Now we apply the above to get the following solution.

 

Example Question #5 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Possible Answers:

Correct answer:

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

 

 

Now we apply the above to get the following solution.

 

Example Question #6 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Possible Answers:

Correct answer:

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

 

 

Now we apply the above to get the following solution.

 

Example Question #7 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Possible Answers:

Correct answer:

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

 

 

Now we apply the above to get the following solution.

 

Example Question #8 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Possible Answers:

Correct answer:

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

 

 

Now we apply the above to get the following solution.

 

Example Question #9 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Possible Answers:

Correct answer:

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

 

 

Now we apply the above to get the following solution.

 

Example Question #10 : Vector Multiplication (Matrices Being Transformations Of Vectors): Ccss.Math.Content.Hsn Vm.C.11

Calculate

Possible Answers:

Correct answer:

Explanation:

In order to do matrix multiplication, we need to check if the dimensions check out. The matrix on the left is , and the matrix on the right is , so the dimensions check out. The resulting matrix will be . To do matrix multiplication, we take the rows of the matrix on the left, and multiply by the columns of the right matrix. Then we sum the results together. This is what it looks like in general.

 

 

Now we apply the above to get the following solution.

 

← Previous 1

All Common Core: High School - Number and Quantity Resources

6 Diagnostic Tests 49 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors

Incompatible Browser

Please upgrade or download one of the following browsers to use Instant Tutoring: