Common Core: High School - Geometry : Prove Laws of Sines and Cosines: CCSS.Math.Content.HSG-SRT.D.10

Study concepts, example questions & explanations for Common Core: High School - Geometry

varsity tutors app store varsity tutors android store

All Common Core: High School - Geometry Resources

6 Diagnostic Tests 83 Practice Tests Question of the Day Flashcards Learn by Concept

Example Questions

← Previous 1

Example Question #1 : Prove Laws Of Sines And Cosines: Ccss.Math.Content.Hsg Srt.D.10

In a triangle where the side opposite a  has length 10 find the side opposite a  angle. Round you answer to the nearest hundredth.

Possible Answers:

Correct answer:

Explanation:

In order to solve this, we need to recall the law of sines.

Where , and  are angles, and , and , are opposite side lengths.

Now let's plug in 62 for , 10 for  and 66 for .
Now our equation becomes

Now we rearrange the equation to solve for 

Now we round our answer to the nearest tenth.

Remember if your answer is negative, multiply it by -1, because side lengths can't be negative.

Example Question #2 : Prove Laws Of Sines And Cosines: Ccss.Math.Content.Hsg Srt.D.10

In a triangle where the side opposite a  has length 6 find the side opposite a  angle. Round you answer to the nearest hundredth.

Possible Answers:

Correct answer:

Explanation:

In order to solve this, we need to recall the law of sines.

Where , and  are angles, and , and , are opposite side lengths.

Now let's plug in 41 for , 6 for  and 39 for .
Now our equation becomes

Now we rearrange the equation to solve for 

Now we round our answer to the nearest tenth.

Remember if your answer is negative, multiply it by -1, because side lengths can't be negative.

Example Question #3 : Prove Laws Of Sines And Cosines: Ccss.Math.Content.Hsg Srt.D.10

In a triangle where the side opposite a  has length 3 find the side opposite a  angle. Round you answer to the nearest hundredth.

Possible Answers:

Correct answer:

Explanation:

In order to solve this, we need to recall the law of sines.

Where , and  are angles, and , and , are opposite side lengths.

Now let's plug in 60 for , 3 for  and 51 for .
Now our equation becomes

Now we rearrange the equation to solve for b

Now we round our answer to the nearest tenth.

Remember if your answer is negative, multiply it by -1, because side lengths can't be negative.

Example Question #4 : Prove Laws Of Sines And Cosines: Ccss.Math.Content.Hsg Srt.D.10

In a triangle where the side opposite a  has length 13 find the side opposite a  angle. Round you answer to the nearest hundredth.

Possible Answers:

Correct answer:

Explanation:

In order to solve this, we need to recall the law of sines.

Where , and  are angles, and , and , are opposite side lengths.

Now let's plug in 45 for , 13 for  and 65 for .
Now our equation becomes

Now we rearrange the equation to solve for b

Now we round our answer to the nearest tenth.

Remember if your answer is negative, multiply it by -1, because side lengths can't be negative.

Example Question #5 : Prove Laws Of Sines And Cosines: Ccss.Math.Content.Hsg Srt.D.10


In a triangle where the side opposite a  has length 12 find the side opposite a  angle. Round you answer to the nearest hundredth.

Possible Answers:

Correct answer:

Explanation:

In order to solve this, we need to recall the law of sines.

Where , and  are angles, and , and , are opposite side lengths.

Now let's plug in 26 for , 12 for  and 41 for .
Now our equation becomes

Now we rearrange the equation to solve for b

Now we round our answer to the nearest tenth.

Remember if your answer is negative, multiply it by -1, because side lengths can't be negative.

Example Question #6 : Prove Laws Of Sines And Cosines: Ccss.Math.Content.Hsg Srt.D.10

In a triangle where the side opposite a  has length 6 find the side opposite a  angle. Round you answer to the nearest hundredth.

Possible Answers:

Correct answer:

Explanation:

In order to solve this, we need to recall the law of sines.

Where , and  are angles, and , and , are opposite side lengths.

Now let's plug in 36 for , 6 for  and 58 for .
Now our equation becomes

Now we rearrange the equation to solve for b

Now we round our answer to the nearest tenth.

Remember if your answer is negative, multiply it by -1, because side lengths can't be negative.

Example Question #7 : Prove Laws Of Sines And Cosines: Ccss.Math.Content.Hsg Srt.D.10

In a triangle where the side opposite a  has length 11 find the side opposite a  angle. Round you answer to the nearest hundredth.

Possible Answers:

Correct answer:

Explanation:

In order to solve this, we need to recall the law of sines.

Where , and  are angles, and , and , are opposite side lengths.

Now let's plug in 26 for , 11 for  and 17 for .
Now our equation becomes

Now we rearrange the equation to solve for b

Now we round our answer to the nearest tenth.

Remember if your answer is negative, multiply it by -1, because side lengths can't be negative.

Example Question #8 : Prove Laws Of Sines And Cosines: Ccss.Math.Content.Hsg Srt.D.10

In a triangle where the side opposite a  has length 11 find the side opposite a  angle. Round you answer to the nearest hundredth.

Possible Answers:

Correct answer:

Explanation:

In order to solve this, we need to recall the law of sines.

Where , and  are angles, and , and , are opposite side lengths.

Now let's plug in 81 for , 11 for  and 66 for .
Now our equation becomes

Now we rearrange the equation to solve for b

Now we round our answer to the nearest tenth.

Remember if your answer is negative, multiply it by -1, because side lengths can't be negative.

Example Question #9 : Prove Laws Of Sines And Cosines: Ccss.Math.Content.Hsg Srt.D.10

In a triangle where the side opposite a  has length 5 find the side opposite a  angle. Round you answer to the nearest hundredth.

Possible Answers:

Correct answer:

Explanation:

In order to solve this, we need to recall the law of sines.

Where , and  are angles, and , and , are opposite side lengths.

Now let's plug in 70 for , 5 for  and 50 for .
Now our equation becomes

Now we rearrange the equation to solve for b

Now we round our answer to the nearest tenth.

Remember if your answer is negative, multiply it by -1, because side lengths can't be negative.

Example Question #10 : Prove Laws Of Sines And Cosines: Ccss.Math.Content.Hsg Srt.D.10

In a triangle where the side opposite a  has length 5 find the side opposite a  angle. Round you answer to the nearest hundredth.

Possible Answers:

Correct answer:

Explanation:

In order to solve this, we need to recall the law of sines.

Where , and  are angles, and , and , are opposite side lengths.

Now let's plug in 11 for , 5 for  and 64 for .
Now our equation becomes

Now we rearrange the equation to solve for b

Now we round our answer to the nearest tenth.

Remember if your answer is negative, multiply it by -1, because side lengths can't be negative.

← Previous 1

All Common Core: High School - Geometry Resources

6 Diagnostic Tests 83 Practice Tests Question of the Day Flashcards Learn by Concept
Learning Tools by Varsity Tutors

Incompatible Browser

Please upgrade or download one of the following browsers to use Instant Tutoring: