College Algebra : Solutions and Solution Sets

Example Questions

Example Question #1 : Solutions And Solution Sets

Give all real solutions of the following equation:

Explanation:

By substituting  - and, subsequently,  this can be rewritten as a quadratic equation, and solved as such:

We are looking to factor the quadratic expression as , replacing the two question marks with integers with product  and sum 5; these integers are .

Substitute back:

The first factor cannot be factored further. The second factor, however, can itself be factored as the difference of squares:

Set each factor to zero and solve:

Since no real number squared is equal to a negative number, no real solution presents itself here.

The solution set is .

Example Question #2 : Solutions And Solution Sets

Give all real solutions of the following equation:

The equation has no real solutions.

Explanation:

By substituting  - and, subsequently,  this can be rewritten as a quadratic equation, and solved as such:

We are looking to factor the quadratic expression as , replacing the two question marks with integers with product 36 and sum ; these integers are .

Substitute back:

These factors can themselves be factored as the difference of squares:

Set each factor to zero and solve:

The solution set is .