Calculus 3 : Cylindrical Coordinates

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

← Previous 1 3 4 5 6 7 8 9 25 26

Example Question #1 : Cylindrical Coordinates

Convert the following into Cylindrical coordinates.

Possible Answers:

Correct answer:

Explanation:

In order to convert to cylindrical coordinates, we need to recall the conversion equations.

 

 

Now lets apply this to our problem.

 

Example Question #2 : Cylindrical Coordinates

When converting rectangular coordinates to cylindrical coordinates, which variable remains fixed? 

Possible Answers:

None of them are fixed.

Correct answer:

Explanation:

To convert a point  into cylindrical corrdinates, the transformation equations are

.

Choices for  may vary depending on the situation, but the  coordinate remains the same.

Example Question #3 : Cylindrical Coordinates

A point in space is located, in Cartesian coordinates, at . What is the position of this point in cylindrical coordinates?

Possible Answers:

Correct answer:

Explanation:

When given Cartesian coordinates of the form  to cylindrical coordinates of the form , the first and third terms are the most straightforward.

Care should be taken, however, when calculating . The formula for it is as follows: 

However, it is important to be mindful of the signs of both  and , bearing in mind which quadrant the point lies; this will determine the value of :

Quadrants

It is something to bear in mind when making a calculation using a calculator; negative  values by convention create a negative , while negative  values lead to 

For our coordinates 

 (Bearing in mind sign convention)

 

Example Question #4 : Cylindrical Coordinates

A point in space is located, in Cartesian coordinates, at . What is the position of this point in cylindrical coordinates?

Possible Answers:

Correct answer:

Explanation:

When given Cartesian coordinates of the form  to cylindrical coordinates of the form , the first and third terms are the most straightforward.

Care should be taken, however, when calculating . The formula for it is as follows: 

However, it is important to be mindful of the signs of both  and , bearing in mind which quadrant the point lies; this will determine the value of :

Quadrants

It is something to bear in mind when making a calculation using a calculator; negative  values by convention create a negative , while negative  values lead to 

For our coordinates 

 (Bearing in mind sign convention)

Example Question #91 : 3 Dimensional Space

A point in space is located, in Cartesian coordinates, at . What is the position of this point in cylindrical coordinates?

Possible Answers:

Correct answer:

Explanation:

When given Cartesian coordinates of the form  to cylindrical coordinates of the form , the first and third terms are the most straightforward.

Care should be taken, however, when calculating . The formula for it is as follows: 

However, it is important to be mindful of the signs of both  and , bearing in mind which quadrant the point lies; this will determine the value of :

Quadrants

It is something to bear in mind when making a calculation using a calculator; negative  values by convention create a negative , while negative  values lead to 

For our coordinates 

 (Bearing in mind sign convention)

Example Question #92 : 3 Dimensional Space

A point in space is located, in Cartesian coordinates, at . What is the position of this point in cylindrical coordinates?

Possible Answers:

Correct answer:

Explanation:

When given Cartesian coordinates of the form  to cylindrical coordinates of the form , the first and third terms are the most straightforward.

Care should be taken, however, when calculating . The formula for it is as follows: 

However, it is important to be mindful of the signs of both  and , bearing in mind which quadrant the point lies; this will determine the value of :

Quadrants

It is something to bear in mind when making a calculation using a calculator; negative  values by convention create a negative , while negative  values lead to 

For our coordinates 

 (Bearing in mind sign convention)

Example Question #93 : 3 Dimensional Space

A point in space is located, in Cartesian coordinates, at . What is the position of this point in cylindrical coordinates?

Possible Answers:

Correct answer:

Explanation:

When given Cartesian coordinates of the form  to cylindrical coordinates of the form , the first and third terms are the most straightforward.

Care should be taken, however, when calculating . The formula for it is as follows: 

However, it is important to be mindful of the signs of both  and , bearing in mind which quadrant the point lies; this will determine the value of :

Quadrants

It is something to bear in mind when making a calculation using a calculator; negative  values by convention create a negative , while negative  values lead to 

For our coordinates 

 (Bearing in mind sign convention)

Example Question #94 : 3 Dimensional Space

A point in space is located, in Cartesian coordinates, at . What is the position of this point in cylindrical coordinates?

Possible Answers:

Correct answer:

Explanation:

When given Cartesian coordinates of the form  to cylindrical coordinates of the form , the first and third terms are the most straightforward.

Care should be taken, however, when calculating . The formula for it is as follows: 

However, it is important to be mindful of the signs of both  and , bearing in mind which quadrant the point lies; this will determine the value of :

Quadrants

It is something to bear in mind when making a calculation using a calculator; negative  values by convention create a negative , while negative  values lead to 

For our coordinates 

 (Bearing in mind sign convention)

Example Question #95 : 3 Dimensional Space

A point in space is located, in Cartesian coordinates, at . What is the position of this point in cylindrical coordinates?

Possible Answers:

Correct answer:

Explanation:

When given Cartesian coordinates of the form  to cylindrical coordinates of the form , the first and third terms are the most straightforward.

Care should be taken, however, when calculating . The formula for it is as follows: 

However, it is important to be mindful of the signs of both  and , bearing in mind which quadrant the point lies; this will determine the value of :

Quadrants

It is something to bear in mind when making a calculation using a calculator; negative  values by convention create a negative , while negative  values lead to 

For our coordinates 

 (Bearing in mind sign convention)

Example Question #96 : 3 Dimensional Space

A point in space is located, in Cartesian coordinates, at . What is the position of this point in cylindrical coordinates?

Possible Answers:

Correct answer:

Explanation:

When given Cartesian coordinates of the form  to cylindrical coordinates of the form , the first and third terms are the most straightforward.

Care should be taken, however, when calculating . The formula for it is as follows: 

However, it is important to be mindful of the signs of both  and , bearing in mind which quadrant the point lies; this will determine the value of :

Quadrants

It is something to bear in mind when making a calculation using a calculator; negative  values by convention create a negative , while negative  values lead to 

For our coordinates 

 (Bearing in mind sign convention)

← Previous 1 3 4 5 6 7 8 9 25 26
Learning Tools by Varsity Tutors

Incompatible Browser

Please upgrade or download one of the following browsers to use Instant Tutoring: