Calculus 1 : How to find prediction models

Study concepts, example questions & explanations for Calculus 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find Prediction Models

Suppose you are a banker and set up a very unique function for your interest rate over time given by

 

 

However, you find your computer incapable of calculating the interest rate at . Estimate the value of the interest rate at  by using a linear approximation, using the slope of the function at .

Possible Answers:

Undefined

Correct answer:

Explanation:

To do a linear approximation, we're going to create a function

, that approximates our situation. In our case, m will be the slope of the function  at , while b will be the value of the function  at . The z will be distance from our starting position  to our end position , which is

Firstly, we need to find the derivative of  with respect to x to determine slope.

By the power rule: 

The slope at  will therefore be 0 since .

Since this is the case, the approximate value of our interest rate will be identical to the value of the original function at x=2, which is 

1 is our final answer. 

Example Question #2 : How To Find Prediction Models

Approximate the value at  of the function ,with a linear approximation using the slope of the function at

Possible Answers:

Correct answer:

Explanation:

To do this, we must determine the slope of the function at , which we will call , and the initial value of the function at , which we will call , and since  is only  away from , our linear approximation will look like:

 

To determine slope, we take the derivative of the function with respect to x and find its value at , which in our case is:

At , our value for  is 

To determine , we need to determine the value of the original equation at 

At , our value for b is  

Since 

Example Question #3 : How To Find Prediction Models

Determine the tangent line to  at  , and use the tangent line to approximate the value at .

Possible Answers:

Correct answer:

Explanation:

First recall that

To find the tangent line of  at , we first determine the slope of . To do so, we must find its derivative. 

Recall that derivatives of exponential functions involving  are given as:

, where  is a constant and  is any function of 

In our case, ,. 

At ,

 , where  is the slope of the tangent line.

To use point-slope form, we need to know the value of the original function at 

Therefore,

At 

Learning Tools by Varsity Tutors

Incompatible Browser

Please upgrade or download one of the following browsers to use Instant Tutoring: