### All Algebra 1 Resources

## Example Questions

### Example Question #1 : How To Use The Quadratic Function

Solve the equation:

**Possible Answers:**

**Correct answer:**

To solve the quadratic equation, , we set the equation equal to zero and then factor the quadratic, . Because these expressions multiply to equal 0, then it must be that at least one of the expressions equals 0. So we set up the corresponding equations and to obtain the answers and .

### Example Question #2 : Quadratic Formula

Solve for :

**Possible Answers:**

The solution is undefined.

**Correct answer:**

To factor this equation, first find two numbers that multiply to 35 and sum to 12. These numbers are 5 and 7. Split up 12x using these two coefficients:

### Example Question #1 : How To Use The Quadratic Function

Given , find .

**Possible Answers:**

**Correct answer:**

Plug in a for x:

Next plug in (a + h) for x:

Therefore f(a+h) - f(a) = .

### Example Question #2 : How To Use The Quadratic Function

Which of the following is the correct solution when is solved using the quadratic equation?

**Possible Answers:**

**Correct answer:**

### Example Question #3 : How To Use The Quadratic Function

Give the minimum value of the function .

**Possible Answers:**

This function does not have a minimum.

**Correct answer:**

This is a quadratic function. The -coordinate of the vertex of the parabola can be determined using the formula , setting :

Now evaluate the function at :

### Example Question #4 : How To Use The Quadratic Function

Quadratic equations may be written in the following format:

In the equation , what is the value of ?

**Possible Answers:**

**Correct answer:**

when using the quadratic formula, your variables are as follows

For the given equation below:

The values of each coefficient are:

### Example Question #4 : How To Use The Quadratic Function

Solve for x.

**Possible Answers:**

**Correct answer:**

The quadratic formula is as follows:

We will start by finding the values of the coefficients of the given equation, but first we must simplify.

Move all the terms to one side and set the equation equal to .

Rearrange.

We can then find the values of the coefficients of the equation:

Quadratic equations may be written in the following format:

In our case, the values of the coefficients are:

Substitute the coefficient values into the quadratic equation:

After simplifying we are left with:

### Example Question #6 : How To Use The Quadratic Function

Solve for :

**Possible Answers:**

**Correct answer:**

To find , we must factor the quadratic function:

### Example Question #5 : How To Use The Quadratic Function

Solve for :

**Possible Answers:**

**Correct answer:**

To find , we want to factor the quadratic function:

### All Algebra 1 Resources

### Incompatible Browser

Please upgrade or download one of the following browsers to use Instant Tutoring: