### All Algebra 1 Resources

## Example Questions

### Example Question #1 : How To Find Fractional Percentages

Rewrite as a fraction in lowest terms.

**Possible Answers:**

**Correct answer:**

%

Cross-cancel by dividing 64 and 100 by 4:

,

which is the fraction we want.

### Example Question #1 : Fractions And Percentage

What is of ?

**Possible Answers:**

**Correct answer:**

of can be calculated as follows.

First, we need to convert into a fraction that we can use in calculations. The percentage symbol tells us that the value is divided by .

Now we can multiply our given value by this fraction to find our answer.

### Example Question #1 : How To Find Fractional Percentages

What is % of ?

**Possible Answers:**

**Correct answer:**

Set up a proportion statement:

Cross-multiply and solve for :

### Example Question #2 : How To Find Fractional Percentages

is what percent of ?

**Possible Answers:**

%

%

%

%

%

**Correct answer:**

%

Set up a proportion statement:

Simplify the right side and solve for :

### Example Question #5 : Fractions And Percentage

What percent of 0.6 is 0.0003?

**Possible Answers:**

2 %

0.002 %

0.02 %

0.05 %

0.5 %

**Correct answer:**

0.05 %

Let be the percent. Then

### Example Question #4 : Fractions And Percentage

What is % of ?

**Possible Answers:**

**Correct answer:**

Set up the proportion statement:

Cross-multply and solve for :

### Example Question #7 : Fractions And Percentage

What is % of ?

**Possible Answers:**

**Correct answer:**

Set up the proportion statement:

Cross-multply and solve for :

### Example Question #6 : How To Find Fractional Percentages

What is of ?

**Possible Answers:**

**Correct answer:**

Set up a proportion:

Cross-multiply and solve for :

### Example Question #3 : How To Find Fractional Percentages

What is of ?

**Possible Answers:**

**Correct answer:**

There are a few ways we can approach this problem. We know that is , or .

We also know that for percentages, "of" means multiply, so we can set up a multiplication problem:

Simplifying gives

.

### Example Question #10 : Fractions And Percentage

What is of ?

**Possible Answers:**

**Correct answer:**

Remember that the word "of" means multiply. One way to solve this is to first divide the percentage by 100.

This is the division of two fractions and can be done by multiplying the first fraction by the reciprocal of the second fraction. Remember to treat as the fraction

The multiplication should look like this

Now multiply across the numerator and denominator

Now that the fractional percentage has been converted to a regular fraction we can multiply this by the to get the answer

Certified Tutor

Certified Tutor

### All Algebra 1 Resources

### Incompatible Browser

Please upgrade or download one of the following browsers to use Instant Tutoring: